81 research outputs found

    ВЛИЯНИЕ ТРАНСПОРТНыХ ЗАДЕРЖЕК ШЛАМОВыХ ПОТОКОВ НА ПРОДОЛЖИТЕЛЬНОСТЬ НЕСТАЦИОНАРНОГО РЕЖИМА РАБОТы ВОДНО-ШЛАМОВыХ СИСТЕМ

    No full text
    Проблема и ее связь с научными и практическими задачами. Все подре-шетные воды гравитационного отделения аккумулируются в зумпфах большой емкости и далее перекачиваются на операцию предварительной регенерации в гидроциклоны, классификаторы или сгустители. При этом необходимо обеспе-чить подачу на самую верхнюю отметку для дальнейшего распределения шла-мовых потоков самотеком. Как правило, такие потоки характеризуются высо-кими транспортными задержками. Магистрали для шламовых потоков перед узлами вывода имеют меньшие геометрические размеры, переносят незначи-тельное количество пульпы по сравнению с вводными коммуникациями

    Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development

    Get PDF
    Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS) effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo

    Idiopathic benign retroperitoneal cyst: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Retroperitoneal cysts are uncommon, with an estimated incidence of 1/5750 to 1/250,000.</p> <p>Case presentation</p> <p>A male patient was admitted with an abdominal pain, jaundice and fever. Clinical examination and investigations confirmed an idiopathic benign retroperitoneal cyst. He underwent surgery and was discharged after making good recovery.</p> <p>Conclusion</p> <p>Retroperitoneal cysts are very rare, and most of the time they are discovered incidentally. Patients may be asymptomatic or present with abdominal pain, referred pain to the legs or weight loss. Imaging may help diagnose these lesions, but surgery is the keystone in confirming the diagnosis. This case is very rare and very educational as it highlights an unusual presentation of a benign retroperitoneal cyst. In our patient, the course of the disease was unique as the patient presented with jaundice.</p

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance

    Get PDF
    Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells

    Alternative splicing of the Anopheles gambiae Dscam gene in diverse Plasmodium falciparum infections

    Get PDF
    Background: In insects, including Anopheles mosquitoes, Dscam (Down syndrome cell adhesion molecule) appears to be involved in phagocytosis of pathogens, and shows pathogen-specific splice-form expression between divergent pathogen (or parasite) types (e.g. between bacteria and Plasmodium or between Plasmodium berghei and Plasmodium falciparum). Here, data are presented from the first study of Dscam expression in response to genetic diversity within a parasite species. Methods: In independent field and laboratory studies, a measure of Dscam splice-form diversity was compared between mosquitoes fed on blood that was free of P. falciparum to mosquitoes exposed to either single or mixed genotype infections of P. falciparum. Results: Significant increases in Anopheles gambiae Dscam (AgDscam) receptor diversity were observed in parasite-exposed mosquitoes, but only weak evidence that AgDscam diversity rises further upon exposure to mixed genotype parasite infections was found. Finally, a cluster of AgDscam exon 4 variants that become especially common during Plasmodium invasion was identified. Conclusions: While the data clearly indicate that AgDscam diversity increases with P. falciparum exposure, they do not suggest that AgDscam diversity rises further in response to increased parasite diversit

    Dissection of chromosome 18 blood pressure and salt-sensitivity quantitative trait loci in the spontaneously hypertensive rat

    Get PDF
    Hypertension in humans and experimental models has a strong hereditary basis, but identification of causative genes remains challenging. Quantitative trait loci (QTLs) for hypertension and salt sensitivity have been reported on rat chromosome 18. We set out to genetically isolate and prioritise genes within the salt sensitivity and hypertension QTLs on the spontaneously hypertensive rat (SHR) chromosome 18, by developing and characterising a series of congenic strains derived from the SHR and normotensive Brown Norway (BN) rat strains. The SHR.BN-D18Rat113/D18Rat82 (SHR-18) congenic strain exhibits significantly lower blood pressure and is salt-resistant compared to SHR. Transplantation of kidneys from SHR-18 donors into SHR recipients is sufficient to attenuate increased blood pressure but not salt sensitivity. Derivation of congenic sublines allowed separation of salt sensitivity from hypertension QTL regions. Renal expression studies with microarray and Solexa-based sequencing in parental and congenic strains identified four differentially expressed genes within the hypertension QTL region, one of which is an unannotated transcript encoding a previously undescribed, small non-coding RNA. Sequencing selected biological candidate genes within the minimal congenic interval revealed a non-synonymous variant in SHR Transcription factor 4. The minimal congenic interval is syntenic to a region of human chromosome 18 where significant linkage to hypertension was observed in family-based linkage studies. These congenic lines provide reagents for identifying causative genes that underlie the chromosome 18 SHR QTLs for hypertension and salt sensitivity. Candidate genes identified in these studies merit further investigation as potentially causative hypertension genes in SHR and human hypertension

    The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Get PDF
    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage

    The Complete Chloroplast Genome Sequence of Date Palm (Phoenix dactylifera L.)

    Get PDF
    BACKGROUND: Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. CONCLUSIONS: Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts
    corecore