5,807 research outputs found
Probabilistic load model development and validation for composite load spectra for select space propulsion engines
A major task of the program to develop an expert system to predict the loads on selected components of a generic space propulsion engine is the design development and application of a probabilitic loads model. This model is being developed in order to account for the random nature of the loads and assess the variable load ranges' effect on the engine performance. A probabilistic model has been developed. The model is based primarily on simulation methods, but also has a Gaussian algebra method (if all variables are near normal), a fast probability integrator routine (for the calculation of low probability events), and a separate, stand alone program for performing barrier crossing calculations. Each of these probabilistic methods has been verified with theoretical calculations using assumed distributional forms
Davis-Beirut reaction: route to thiazolo-, thiazino-, and thiazepino-2H-indazoles.
Methods for the construction of thiazolo-, thiazino-, and thiazepino-2H-indazoles from o-nitrobenzaldehydes or o-nitrobenzyl bromides and S-trityl-protected 1°-aminothioalkanes are reported. The process consists of formation of the requisite N-(2-nitrobenzyl)(tritylthio)alkylamine, subsequent deprotection of the trityl moiety with TFA, and immediate treatment with aq. KOH in methanol under Davis-Beirut reaction conditions to deliver the target thiazolo-, thiazino-, or thiazepino-2H-indazole in good overall yield. Subsequent S-oxidation gives the corresponding sulfone
Ethyl 1-benzyl-1,2,3,3a,4,10b-hexa-hydro-pyrrolo-[2',3':3,4]pyrrolo-[1,2-a]benzimidazole-2-carboxyl-ate.
The title mol-ecule, C(22)H(23)N(3)O(2), was obtained via an intra-molecular cyclo-addition of an azomethine ylide and an alkene tethered by a benzimidazole unit. The benzoimidazole unit is essentially planar, with an r.m.s. deviation of 0.0087 Å from the nine constituent atoms. It has a cis fusion of the two pyrrolidine rings as well as a cis ester appendage. The two pyrrolidine rings rings have envelope conformations. The crystal packing is stabilized by aromatic π-π stacking of parallel benzimidazole ring systems, with a centroid-to-centroid distance of 3.518 (6) Å. Weak inter-molecular C-H⋯O contacts may also play a role in the stability of the packing
Composite load spectra for select space propulsion structural components
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being integrated in an expert system code specifically developed for this project
Composite load spectra for select space propulsion structural components
The objective of the Composite Load Spectra (CLS) project is to build a knowledge based system to synthesize probabilistic loads for selected space propulsion engine components. The knowledge based system has a load expert system module and a load calculation module. The load expert system provides load information and the load calculation module generates the probabilistic load distributions. The engine loads are divided into 4 broad classes: the engine independent loads, the engine system dependent load, the component local independent loads and the component loads. These classes are defined and illustrated
Composite load spectra for select space propulsion structural components
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data
Parameter Identification of Pressure Sensors by Static and Dynamic Measurements
Fast identification methods of pressure sensors are investigated. With regard
to a complete accurate sensor parameter identification two different
measurement methods are combined. The approach consists on one hand in
performing static measurements - an applied pressure results in a membrane
deformation measured interferometrically and the corresponding output voltage.
On the other hand optical measurements of the modal responses of the sensor
membranes are performed. This information is used in an inverse identification
algorithm to identify geometrical and material parameters based on a FE model.
The number of parameters to be identified is thereby generally limited only by
the number of measurable modal frequencies. A quantitative evaluation of the
identification results permits furthermore the classification of processing
errors like etching errors. Algorithms and identification results for membrane
thickness, intrinsic stress and output voltage will be discussed in this
contribution on the basis of the parameter identification of relative pressure
sensors.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Presidents Notes
These are times of change in our world as profound as those foreseen by Rear Admiral Stephen B. Luce when he founded the Naval War College in 1884. The Admiral founded the College to help the U.S. Navy meet the demands of change. He saw his navy entering a world which required new and better thought than had sufficed, developed by more intellectually prepared naval officers than could easily be found. We should recall his foresight now, for I think we are on a similar threshold
- …