171 research outputs found

    Fabrication of mesa structures on superconducting Bi2Sr2CaCu2O8+& single crystals

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Physics, Izmir, 2005Includes bibliographical references (leaves: 109-114)Text in English; Abstract: Turkish and Englishxii, 114 leavesThere have been tremendous efforts to understand the relatively much more sophisticated mechanism of superconductivity in high temperature superconductors (HTSC). In order to investigate the inherent features and tunneling characteristics just only peculiar to HTSC, micron-sized mesa structures were fabricated on the surfaces of both pristine optimally doped and HgBr2 intercalated Bi2Sr2CaCu2O8+& (Bi-2212) single crystals using photolithography and Argon ion beam etching techniques. The surface topography and heights of the mesas were examined with atomic force microscopy.Hysteretic I-V curves with multiple branches and temperature dependence of tunneling characteristics were investigated by means of a novel technique, point contact tunneling (PCT) and experiments were carried out in a large range of temperatures from 4.2 K to 300 K. The results of SIN single junctions and SIS break junctions obtained by tunneling measurements using PCT technique on bulk crystals were compared withtunneling measurements using PCT technique on bulk crystals were compared with intrinsic Josephson junction quasiparticle spectra generally showing sharp peaks at the gap voltages and no dip/hump structures; which are reconciled with overheating in the mesa. The IJJ measurements performed with HgBr2 intercalated Bi-2212 samples showed far more enhanced characteristics indicating less heating. The zero bias conductance versus temperature plots were examined to scrutinize the existence of pseudogap in electronic excitation spectra of investigated samples. Besides, the normalized gap voltages were plotted against normalized temperature to show the deviation from BCS fit, which displays the novelty of HTSC

    Tunable negative permeability in a three-dimensional superconducting metamaterial

    Get PDF
    We report on highly tunable radio frequency (rf) characteristics of a low-loss and compact three dimensional (3D) metamaterial made of superconducting thin film spiral resonators. The rf transmission spectrum of a single element of the metamaterial shows a fundamental resonance peak at \sim24.95 MHz that shifts to a 25%\% smaller frequency and becomes degenerate when a 3D array of such elements is created. The metamaterial shows an \emph{in-situ} tunable narrow frequency band in which the real part of the effective permeability is negative over a wide range of temperature, which reverts to gradually near-zero and positive values as the superconducting critical temperature is approached. This metamaterial can be used for increasing power transfer efficiency and tunability of electrically small rf-antennas.Comment: 6 pages, 4 figure

    Plasmonic Scaling of Superconducting Metamaterials

    Get PDF
    Superconducting metamaterials are utilized to study the approach to the plasmonic limit simply by tuning temperature to modify the superfluid density, and thus the superfluid plasma frequency. We examine the persistence of artificial magnetism in a metamaterial made with superconductors in the plasmonic limit, and compare to the electromagnetic behavior of normal metals as a function of frequency as the plasma frequency is approached from below. Spiral-shaped Nb thin film meta-atoms of scaled dimensions are employed to explore the plasmonic behavior in these superconducting metamaterials, and the scaling condition allows extraction of the temperature dependent superfluid density, which is found to be in good agreement with expectations.Comment: 5 pages, 3 figure

    Unconventional rf photoresponse from a superconducting spiral resonator

    Get PDF
    Superconducting thin film resonators employing strip geometries show great promise in rf/microwave applications due to their low loss and compact nature. However, their functionality is limited by nonlinear effects at elevated rf/microwave powers. Here, we show that by using a planar spiral geometry carrying parallel currents in adjacent turns, this limitation can be minimized. We investigate the rf current distributions in spiral resonators implemented with Nb thin films via laser scanning microscopy. The rf current density profile along the width of the individual turns of the resonators reveals an unconventional trend: maximum current in the middle of the structure and decaying toward its edges. This unusual behavior is associated with the circular nature of the geometry and the cancellation of magnetic field between the turns, which is favorable for handling high powers since it allows the linear characteristics to persist at high rf current densities.Comment: 8 pages, 7 figure

    Evidence for an anomalous current phase relation in topological insulator Josephson junctions

    Full text link
    Josephson junctions with topological insulator weak links can host low energy Andreev bound states giving rise to a current phase relation that deviates from sinusoidal behaviour. Of particular interest are zero energy Majorana bound states that form at a phase difference of π\pi. Here we report on interferometry studies of Josephson junctions and superconducting quantum interference devices (SQUIDs) incorporating topological insulator weak links. We find that the nodes in single junction diffraction patterns and SQUID oscillations are lifted and independent of chemical potential. At high temperatures, the SQUID oscillations revert to conventional behaviour, ruling out asymmetry. The node lifting of the SQUID oscillations is consistent with low energy Andreev bound states exhibiting a nonsinusoidal current phase relation, coexisting with states possessing a conventional sinusoidal current phase relation. However, the finite nodal currents in the single junction diffraction pattern suggest an anomalous contribution to the supercurrent possibly carried by Majorana bound states, although we also consider the possibility of inhomogeneity.Comment: 6 pages, 4 figure

    Phase Coherence and Andreev Reflection in Topological Insulator Devices

    Full text link
    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to non-magnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics which can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Perot oscillations in a TI sandwiched between a superconducting and normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from the additional phase accumulated from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.Comment: 9 pages, 7 figure

    Dynamical Gate Tunable Supercurrents in Topological Josephson Junctions

    Full text link
    Josephson junctions made of closely-spaced conventional superconductors on the surface of 3D topological insulators have been proposed to host Andreev bound states (ABSs) which can include Majorana fermions. Here, we present an extensive study of the supercurrent carried by low energy ABSs in Nb/Bi2_2Se3_3/Nb Josephson junctions in various SQUIDs as we modulate the carrier density in the Bi2_2Se3_3 barriers through electrostatic top gates. As previously reported, we find a precipitous drop in the Josephson current at a critical value of the voltage applied to the top gate. This drop has been attributed to a transition where the topologically trivial 2DEG at the surface is nearly depleted, causing a shift in the spatial location and change in nature of the helical surface states. We present measurements that support this picture by revealing qualitative changes in the temperature and magnetic field dependence of the critical current across this transition. In particular, we observe pronounced fluctuations in the critical current near total depletion of the 2DEG that demonstrate the dynamical nature of the supercurrent transport through topological low energy ABSs.Comment: 6 pages, 6 figure

    Rebuttal to "Comment by V.M. Krasnov on 'Counterintuitive consequence of heating in strongly-driven intrinsic junctions of Bi2Sr2CaCu2O8+d Mesas' "

    Get PDF
    In our article [1], we found that with increasing dissipation there is a clear, systematic shift and sharpening of the conductance peak along with the disappearance of the higher-bias dip/hump features (DHF), for a stack of intrinsic Josephson junctions (IJJs) of intercalated Bi2Sr2CaCu2O8+{\delta} (Bi2212). Our work agrees with Zhu et al [2] on unintercalated, pristine Bi2212, as both studies show the same systematic changes with dissipation. The broader peaks found with reduced dissipation [1,2] are consistent with broad peaks in the density-of-states (DOS) found among scanning tunneling spectroscopy [3] (STS), mechanical contact tunneling [4] (MCT) and inferred from angle (momentum) resolved photoemission spectroscopy [5] (ARPES); results that could not be ignored. Thus, sharp peaks are extrinsic and cannot correspond to the superconducting DOS. We suggested that the commonality of the sharp peaks in our conductance data, which is demonstrably shown to be heating-dominated, and the peaks of previous intrinsic tunneling spectroscopy (ITS) data implies that these ITS reports might need reinterpretation.Comment: Rebuttal to Comment of Krasnov arXiv:1007.451

    Single Junction and Intrinsic Josephson Junction Tunneling Spectroscopies of Bi2Sr2CaCu2O8+d

    Get PDF
    Tunneling spectroscopy measurements are reported on optimally-doped and overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals. A novel point contact method is used to obtain superconductor-insulator-normal metal (SIN) and SIS break junctions as well as intrinsic Josephson junctions (IJJ) from nanoscale crystals. Three junction types are obtained on the same crystal to compare the quasiparticle peaks and higher bias dip/hump structures which have also been found in other surface probes such as scanning tunneling spectroscopy and angle-resolved photoemission spectroscopy. However, our IJJ quasiparticle spectra consistently reveal very sharp conductance peaks and no higher bias dip structures. The IJJ conductance peak voltage divided by the number of junctions in the stack consistently leads to a significant underestimate of Δ\Delta when compared to the single junction values. The comparison of the three methods suggests that the markedly different characteristics of IJJ are a consequence of nonequilibrium effects and are not intrinsic quasiparticle features.Comment: 4 pages, 4 figures; presented at the Applied Superconductivity Conference (October 3-8, 2004) in Jacksonville, FL; to be published in IEEE Trans. Appl. Supercon

    Superconducting RF Metamaterials Made with Magnetically Active Planar Spirals

    Full text link
    Superconducting metamaterials combine the advantages of low-loss, large inductance (with the addition of kinetic inductance), and extreme tunability compared to their normal metal counterparts. Therefore, they allow realization of compact designs operating at low frequencies. We have recently developed radio frequency (RF) metamaterials with a high loaded quality factor and an electrical size as small as \simλ\lambda658, (λ\lambda is the free space wavelength) by using Nb thin films. The RF metamaterial is composed of truly planar spirals patterned with lithographic techniques. Linear transmission characteristics of these metamaterials show robust Lorentzian resonant peaks in the sub- 100 MHz frequency range below the TcT_c of Nb. Though Nb is a non-magnetic material, the circulating currents in the spirals generated by RF signals produce a strong magnetic response, which can be tuned sensitively either by temperature or magnetic field thanks to the superconducting nature of the design. We have also observed strong nonlinearity and meta-stable jumps in the transmission data with increasing RF input power until the Nb is driven into the normal state. We discuss the factors modifying the induced magnetic response from single and 1-D arrays of spirals in the light of numerical simulations.Comment: 4 pages, 7 figure
    corecore