Josephson junctions with topological insulator weak links can host low energy
Andreev bound states giving rise to a current phase relation that deviates from
sinusoidal behaviour. Of particular interest are zero energy Majorana bound
states that form at a phase difference of π. Here we report on
interferometry studies of Josephson junctions and superconducting quantum
interference devices (SQUIDs) incorporating topological insulator weak links.
We find that the nodes in single junction diffraction patterns and SQUID
oscillations are lifted and independent of chemical potential. At high
temperatures, the SQUID oscillations revert to conventional behaviour, ruling
out asymmetry. The node lifting of the SQUID oscillations is consistent with
low energy Andreev bound states exhibiting a nonsinusoidal current phase
relation, coexisting with states possessing a conventional sinusoidal current
phase relation. However, the finite nodal currents in the single junction
diffraction pattern suggest an anomalous contribution to the supercurrent
possibly carried by Majorana bound states, although we also consider the
possibility of inhomogeneity.Comment: 6 pages, 4 figure