235 research outputs found

    Hopf Bifurcation and Chaos in Tabu Learning Neuron Models

    Full text link
    In this paper, we consider the nonlinear dynamical behaviors of some tabu leaning neuron models. We first consider a tabu learning single neuron model. By choosing the memory decay rate as a bifurcation parameter, we prove that Hopf bifurcation occurs in the neuron. The stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are determined by applying the normal form theory. We give a numerical example to verify the theoretical analysis. Then, we demonstrate the chaotic behavior in such a neuron with sinusoidal external input, via computer simulations. Finally, we study the chaotic behaviors in tabu learning two-neuron models, with linear and quadratic proximity functions respectively.Comment: 14 pages, 13 figures, Accepted by International Journal of Bifurcation and Chao

    Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs

    Get PDF
    Coral reefs experience phase shifts from coral- to algae-dominated benthic communities, which could affect the interplay between processes introducing and removing bioavailable nitrogen. However, the magnitude of such processes, i.e., dinitrogen (N-2) fixation and denitrification levels, and their responses to phase shifts remain unknown in coral reefs. We assessed both processes for the dominant species of six benthic categories (hard corals, soft corals, turf algae, coral rubble, biogenic rock, and reef sands) accounting for>98% of the benthic cover of a central Red Sea coral reef. Rates were extrapolated to the relative benthic cover of the studied organisms in co-occurring coral- and algae-dominated areas of the same reef. In general, benthic categories with high N-2 fixation exhibited low denitrification activity. Extrapolated to the respective reef area, turf algae and coral rubble accounted for>90% of overall N-2 fixation, whereas corals contributed to more than half of reef denitrification. Total N-2 fixation was twice as high in algae- compared to coral-dominated areas, whereas denitrification levels were similar. We conclude that algae-dominated reefs promote new nitrogen input through enhanced N-2 fixation and comparatively low denitrification. The subsequent increased nitrogen availability could support net productivity, resulting in a positive feedback loop that increases the competitive advantage of algae over corals in reefs that experienced a phase shift.Peer reviewe

    Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides

    Get PDF
    Proton transfer reaction (PTR) is a commonly applied ionization technique for mass spectrometers, in which hydronium ions (H3O+) transfer a proton to analytes with higher proton affinities than the water molecule. This method has most commonly been used to quantify volatile hydrocarbons, but later-generation PTR instruments have been designed for better throughput of less volatile species, allowing detection of more functionalized molecules as well. For example, the recently developed Vocus PTR time-of-flight mass spectrometer (PTR-TOF) has been shown to agree well with an iodide-adduct-based chemical ionization mass spectrometer (CIMS) for products with 3-5 O atoms from oxidation of monoterpenes (C10H16). However, while several different types of CIMS instruments (including those using iodide) detect abundant signals also at "dimeric" species, believed to be primarily ROOR peroxides, no such signals have been observed in the Vocus PTR even though these compounds fulfil the condition of having higher proton affinity than water. More traditional PTR instruments have been limited to volatile molecules as the inlets have not been designed for transmission of easily condensable species. Some newer instruments, like the Vocus PTR, have overcome this limitation but are still not able to detect the full range of functionalized products, suggesting that other limitations need to be considered. One such limitation, well-documented in PTR literature, is the tendency of protonation to lead to fragmentation of some analytes. In this work, we evaluate the potential for PTR to detect dimers and the most oxygenated compounds as these have been shown to be crucial for forming atmospheric aerosol particles. We studied the detection of dimers using a Vocus PTR-TOF in laboratory experiments, as well as through quantum chemical calculations. Only noisy signals of potential dimers were observed during experiments on the ozonolysis of the monoterpene alpha-pinene, while a few small signals of dimeric compounds were detected during the ozonolysis of cyclohexene. During the latter experiments, we also tested varying the pressures and electric fields in the ionization region of the Vocus PTR-TOF, finding that only small improvements were possible in the relative dimer contributions. Calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation. With the inclusion of additional energy from the ion-molecule collisions driven by the electric fields in the ionization source, computational results suggest substantial or nearly complete fragmentation of dimers. Our study thus suggests that while the improved versions of PTR-based mass spectrometers are very powerful tools for measuring hydrocarbons and their moderately oxidized products, other types of CIMS are likely more suitable for the detection of ROOR and ROOH species.Peer reviewe

    High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs

    Get PDF
    Following coral mortality in tropical reefs, pioneer communities dominated by filamentous and crustose algae efficiently colonize substrates previously occupied by coral tissue. This phenomenon is particularly common after mass coral mortality following prolonged bleaching events associated with marine heatwaves. Pioneer communities play an important role for the biological succession and reorganization of reefs after disturbance. However, their significance for critical ecosystem functions previously mediated by corals, such as the efficient cycling of carbon (C) and nitrogen (N) within the reef, remains uncertain. We used 96 carbonate tiles to simulate the occurrence of bare substrates after disturbance in a coral reef of the central Red Sea. We measured rates of C and dinitrogen (N-2) fixation of pioneer communities on these tiles monthly over an entire year. Coupled with elemental and stable isotope analyses, these measurements provide insights into macronutrient acquisition, export and the influence of seasonality. Pioneer communities exhibited high rates of C and N(2)fixation within 4-8 weeks after the introduction of experimental bare substrates. Ranging from 13 to 25 mu mol C cm(-2) day(-1)and 8 to 54 nmol N cm(-2) day(-1), respectively, C and N(2)fixation rates were comparable to reported values for established Red Sea coral reefs. This similarity indicates that pioneer communities may quickly compensate for the loss of benthic productivity by corals. Notably, between 40% and 85% of fixed organic C was exported into the environment, constituting a vital source of energy for the coral reef food web. Our findings suggest that benthic pioneer communities may play a crucial, yet overlooked role in the C and N dynamics of oligotrophic coral reefs by contributing to the input of new C and N after coral mortality. While not substituting other critical ecosystem functions provided by corals (e.g. structural habitat complexity and coastal protection), pioneer communities likely contribute to maintaining coral reef nutrient cycling through the accumulation of biomass and import of macronutrients following coral loss. A freePlain Language Summarycan be found within the Supporting Information of this article.Peer reviewe

    The Atapuerca sites and the Ibeas hominids

    Get PDF
    The Atapuerca railway Trench and Ibeas sites near Burgos, Spain, are cave fillings that include a series of deposits ranging from below the Matuyama/Bruhnes reversal up to the end of Middle Pleistocene. The lowest fossil-bearing bed in the Trench contains an assemblage of large and small Mammals including Mimomys savini, Pitymys gregaloides, Pliomys episcopalis, Crocuta crocuta, Dama sp. and Megacerini; the uppermost assemblage includes Canis lupus, Lynx spelaea, Panthera (Leo) fossilis, Felis sylvestris, Equus caballus steinheimensis, E.c. germanicus, Pitymys subtenaneus, Microtus arvalis agrestis, Pliomys lenki, and also Panthera toscana, Dicerorhinus bemitoechus, Bison schoetensacki, which are equally present in the lowest level. The biostratigraphic correlation and dates of the sites are briefly discussed, as are the paleoclimatic interpretation of the Trench sequences. Stone artifacts are found in several layers; the earliest occurrences correspond to the upper beds containing Mimomys savini. A set of preserved human occupation floors has been excavated in the top fossil-bearing beds. The stone-tool assemblages of the upper levels are of upper-medial Acheulean to Charentian tradition. The rich bone breccia SH, in the Cueva Mayor-Cueva del Silo, Ibeas de Juarros, is a derived deposit, due to a mud flow that dispersed and carried the skeletons of many carnivores and humans. The taxa represented are: Vrsus deningeri (largely dominant), Panthera (Leo) fossilis, Vulpes vulpes, Homo sapiens var. Several traits of both mandibular and cranial remains are summarized. Preliminary attempts at dating suggest that the Ibeas fossil man is older than the Last Interglacial, or oxygen-isotope stage 5

    Comparison of Skeletal Effects of Ovariectomy Versus Chemically Induced Ovarian Failure in Mice

    Get PDF
    Bone loss associated with menopause leads to an increase in skeletal fragility and fracture risk. Relevant animal models can be useful for evaluating the impact of ovarian failure on bone loss. A chemically induced model of menopause in which mice gradually undergo ovarian failure yet retain residual ovarian tissue has been developed using the chemical 4-vinylcyclohexene diepoxide (VCD). This study was designed to compare skeletal effects of VCD-induced ovarian failure to those associated with ovariectomy (OVX). Young (28 day) C57Bl/6Hsd female mice were dosed daily with vehicle or VCD (160 mg/kg/d, IP) for 15 days (n = 6–7/group) and monitored by vaginal cytology for ovarian failure. At the mean age of VCD-induced ovarian failure (∼6 wk after onset of dosing), a different group of mice was ovariectomized (OVX, n = 8). Spine BMD (SpBMD) was measured by DXA for 3 mo after ovarian failure and OVX. Mice were killed ∼5 mo after ovarian failure or OVX, and bone architecture was evaluated by μCT ex vivo. In OVX mice, SpBMD was lower than controls 1 mo after OVX, whereas in VCD-treated mice, SpBMD was not lower than controls until 2.9 mo after ovarian failure (p < 0.05). Both VCD-induced ovarian failure and OVX led to pronounced deterioration of trabecular bone architecture, with slightly greater effects in OVX mice. At the femoral diaphysis, cortical bone area and thickness did not differ between VCD mice and controls but were decreased in OVX compared with both groups (p < 0.05). Circulating androstenedione levels were preserved in VCD-treated mice but reduced in OVX mice relative to controls (p < 0.001). These findings support that (1) VCD-induced ovarian failure leads to trabecular bone deterioration, (2) bone loss is attenuated by residual ovarian tissue, particularly in diaphyseal cortical bone, and (3) the VCD mouse model can be a relevant model for natural menopause in the study of associated bone disorders

    Highly functionalized organic nitrates in the southeast United States : Contribution to secondary organic aerosol and reactive nitrogen budgets

    Get PDF
    Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene-and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas-particle equilibrium and (ii) have a short particle-phase lifetime (similar to 2-4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment.Peer reviewe

    The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR.

    Get PDF
    The recent discovery of sensory (tastant and odorant) G protein-coupled receptors on the smooth muscle of human bronchi suggests unappreciated therapeutic targets in the management of obstructive lung diseases. Here we have characterized the effects of a wide range of volatile odorants on the contractile state of airway smooth muscle (ASM) and uncovered a complex mechanism of odorant-evoked signaling properties that regulate excitation-contraction (E-C) coupling in human ASM cells. Initial studies established multiple odorous molecules capable of increasing intracellular calcium ([Ca2+]i) in ASM cells, some of which were (paradoxically) associated with ASM relaxation. Subsequent studies showed a terpenoid molecule (nerol)-stimulated OR2W3 caused increases in [Ca2+]i and relaxation of ASM cells. Of note, OR2W3-evoked [Ca2+]i mobilization and ASM relaxation required Ca2+ flux through the store-operated calcium entry (SOCE) pathway and accompanied plasma membrane depolarization. This chemosensory odorant receptor response was not mediated by adenylyl cyclase (AC)/cyclic nucleotide-gated (CNG) channels or by protein kinase A (PKA) activity. Instead, ASM olfactory responses to the monoterpene nerol were predominated by the activity of Ca2+-activated chloride channels (TMEM16A), including the cystic fibrosis transmembrane conductance regulator (CFTR) expressed on endo(sarco)plasmic reticulum. These findings demonstrate compartmentalization of Ca2+ signals dictates the odorant receptor OR2W3-induced ASM relaxation and identify a previously unrecognized E-C coupling mechanism that could be exploited in the development of therapeutics to treat obstructive lung diseases
    • …
    corecore