236 research outputs found
Use of smokeless tobacco and risk of myocardial infarction and stroke: systematic review with meta-analysis
Objective To assess whether people who use smokeless tobacco products are at increased risk of myocardial infarction and stroke
European Code against Cancer 4th Edition:Medical exposures, including hormone therapy, and cancer
AbstractThe 4th edition of the European Code against Cancer recommends limiting – or avoiding when possible – the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen–progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen–progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit–risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events
The IARC Perspective on Colorectal Cancer Screening
Colorectal cancer, which is the third most common cancer in men and the second most common in women, represents almost 10% of the annual global cancer incidence. Incidence rates of colorectal cancer show a strong positive gradient with an increasing level of economic development. Even so, the net 5-year rate of survival decreases with lower levels of income, with rates reaching 60% in high-income countries but falling to 30% or less in low-income countries.
Established risk factors for colorectal cancer include consumption of processed meats, consumption of alcoholic beverages, tobacco smoking, and excess body fat, whereas consumption of dietary fiber and dairy products and increased levels of physical activity decrease the risk. In addition, certain subgroups of the population are at increased risk owing to genetic predisposition (e.g., the Lynch syndrome), a family or personal history of colorectal neoplasia, or medical conditions (e.g., inflammatory bowel disease) that have been associated with colorectal cancer
European Code against Cancer 4th Edition: Environment, occupation and cancer
AbstractPeople are exposed throughout life to a wide range of environmental and occupational pollutants from different sources at home, in the workplace or in the general environment – exposures that normally cannot be directly controlled by the individual. Several chemicals, metals, dusts, fibres, and occupations have been established to be causally associated with an increased risk of specific cancers, such as cancers of the lung, skin and urinary bladder, and mesothelioma. Significant amounts of air pollutants – mainly from road transport and industry – continue to be emitted in the European Union (EU); an increased occurrence of lung cancer has been attributed to air pollution even in areas below the EU limits for daily air pollution. Additionally, a wide range of pesticides as well as industrial and household chemicals may lead to widespread human exposure, mainly through food and water. For most environmental pollutants, the most effective measures are regulations and community actions aimed at reducing and eliminating the exposures. Thus, it is imperative to raise awareness about environmental and occupational carcinogens in order to motivate individuals to be proactive in advocating protection and supporting initiatives aimed at reducing pollution. Regulations are not homogeneous across EU countries, and protective measures in the workplace are not used consistently by all workers all the time; compliance with regulations needs to be continuously monitored and enforced. Therefore, the recommendation on Environment and Occupation of the 4th edition of the European Code against Cancer, focusing on what individuals can do to reduce their cancer risk, reads: “In the workplace, protect yourself against cancer-causing substances by following health and safety instructions.
Global and regional burden of disease and injury in 2016 arising from occupational exposures: a systematic analysis for the Global Burden of Disease Study 2016
Objectives This study provides an overview of the influence of occupational risk factors on the global burden of disease as estimated by the occupational component of the Global Burden of Disease (GBD) 2016 study. Methods The GBD 2016 study estimated the burden in terms of deaths and disability-adjusted life years (DALYs) arising from the effects of occupational risk factors (carcinogens; asthmagens; particulate matter, gases and fumes (PMGF); secondhand smoke (SHS); noise; ergonomic risk factors for low back pain; risk factors for injury). A population attributable fraction (PAF) approach was used for most risk factors. Results In 2016, globally, an estimated 1.53 (95% uncertainty interval 1.39–1.68) million deaths and 76.1 (66.3–86.3) million DALYs were attributable to the included occupational risk factors, accounting for 2.8% of deaths and 3.2% of DALYs from all causes. Most deaths were attributable to PMGF, carcinogens (particularly asbestos), injury risk factors and SHS. Most DALYs were attributable to injury risk factors and ergonomic exposures. Men and persons 55 years or older were most affected. PAFs ranged from 26.8% for low back pain from ergonomic risk factors and 19.6% for hearing loss from noise to 3.4% for carcinogens. DALYs per capita were highest in Oceania, Southeast Asia and Central sub-S aharan Africa. On a per capita basis, between 1990 and 2016 there was an overall decrease of about 31% in deaths and 25% in DALYs. Conclusions Occupational exposures continue to cause an important health burden worldwide, justifying the need for ongoing prevention and control initiatives.BPAQ acknowledges the institutional support of PRONABEC (National Program of Scholarship and Educational Loan), provided by the Peruvian Government; and the Judith Lumley Centre of La Trobe University. Till Winfried Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor Award, funded by the Federal
Ministry of Education and Research, Germany. Félix Carvalho acknowledges UID/ MULTI/04378/2019 support with funding from FCT/MCTES through national funds. Eduarda Fernandes acknowledges UID/QUI/50006/2019 support with funding from
FCT/MCTES through national funds. Mihajlo Jakovljevic acknowledges that the Serbian part of this GBD contribution was cofinanced through Grant OI 175 014 of the Ministry of Education, Science and Technological Development of the Republic of
Serbia. Yun Jin Kim was supported by the Office of Research and Innovation, Xiamen University Malaysia. Walter Mendoza is currently a program analyst for Population and Development at the Peru Country Office of the United Nations Population Fund UNFPA, an institution which does not necessarily endorse this study. MMolokhia was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College
London. Abdallah M Samy received a fellowship from the Egyptian Fulbright Mission Program (EFMP). SMSI is funded by a Senior Research Fellowship from the Institute for Physical Activity and Nutrition (IPAN), Deakin University. RT-S was supported
in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. Paul Yip was supported by the Strategic Public Policy Research (SPPR) grant (HKU-12).publishedVersio
The Science and Practice of Carcinogen Identification and Evaluation
Several national and international health agencies have established programs with the aim of identifying agents and exposures that cause cancer in humans. Carcinogen identification is an activity grounded in the scientific evaluation of the results of human epidemiologic studies, long-term bioassays in experimental animals, and other data relevant to an evaluation of carcinogenicity and its mechanisms. In this commentary, after a brief discussion of the science basis common to the evaluation of carcinogens across different programs, we discuss in more detail the principles and procedures currently used by the IARC Monographs program
- …