664 research outputs found
SEM-EDS and PIXE analyses of Medieval glass from the museum Aboa Vetus in Turku
The scanning electron microscopy (SEM) with an energy-dispersive spectrometer (EDS) and the proton induced X-ray emission (PIXE) methods were used to determine the major, minor and trace elements in 54 fragments of medieval glass vessels from the museum Aboa vetus in Turku. The absolute concentrations of silicon, sodium, potassium, calcium, magnesium, aluminium, phosphorus, sulphur, chlorine, titanium, manganese, iron, copper, zinc, lead, arsenic, rubidium, strontium, zirconium and barium were measured. The possibilities of using analytical methods to reconstruct vessels and to obtain information on the origin of the glasses are discussed
Expression, purification, and initial characterization of different domains of recombinant mouse 2',3'-cyclic nucleotide 3'-phosphodiesterase, an enigmatic enzyme from the myelin sheath
<p>Abstract</p> <p>Background</p> <p>2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an enigmatic enzyme specifically expressed at high levels in the vertebrate myelin sheath, whose function and physiological substrates are unknown. The protein consists of two domains: an uncharacterized N-terminal domain with little homology to other proteins, and a C-terminal phosphodiesterase domain.</p> <p>Findings</p> <p>In order to be able to fully characterize CNPase structurally and functionally, we have set up expression systems for different domains of CNPase, using a total of 18 different expression constructs. CNPase was expressed in <it>E. coli </it>with a TEV-cleavable His-tag. Enzymatic activity assays indicated that the purified proteins were active and correctly folded. The folding of both the full-length protein, as well as the N- and C-terminal domains, was also studied by synchrotron CD spectroscopy. A thermal shift assay was used to optimize buffer compositions to be used during purification and storage. The assay also indicated that CNPase was most stable at a pH of 5.5, and could be significantly stabilized by high salt concentrations.</p> <p>Conclusions</p> <p>We have been able to express and purify recombinantly several different domains of CNPase, including the isolated N-terminal domain, which is folded mainly into a Ξ²-sheet structure. The expression system can be used as an efficient tool to elucidate the role of CNPase in the myelin sheath.</p
Multiple sclerosis and myelin basic protein: insights into protein disorder and disease
Myelin basic protein (MBP) is an abundant protein in central nervous system (CNS) myelin. MBP has long been studied as a factor in the pathogenesis of the autoimmune neurodegenerative disease multiple sclerosis (MS). MS is characterized by CNS inflammation, demyelination, and axonal loss. One of the main theories on the pathogenesis of MS suggests that exposure to foreign antigens causes the activation of cross-reactive T cells in genetically susceptible individuals, with MBP being a possible autoantigen. While a direct role for MBP as a primary antigen in human MS is unclear, it is clear that MBP and its functions in myelin formation and long-term maintenance are linked to MS. This review looks at some key molecular characteristics of MBP and its relevance to MS, as well as the mechanisms of possible molecular mimicry between MBP and some viral antigens. We also discuss the use of serum anti-myelin antibodies as biomarkers for disease. MBP is a prime example of an apparently simple, but in fact biochemically and structurally complex molecule, which is closely linked to both normal nervous system development and neurodegenerative disease.publishedVersio
Stability and flexibility of full-length human oligodendrocytic QKI6
Objective: Oligodendrocytes account for myelination in the central nervous system. During myelin compaction, key proteins are translated in the vicinity of the myelin membrane, requiring targeted mRNA transport. Quaking isoform 6 (QKI6) is a STAR domain-containing RNA transport protein, which binds a conserved motif in the 3β²-UTR of certain mRNAs, affecting the translation of myelination-involved proteins. RNA binding has been earlier structurally characterized, but information about full-length QKI6 conformation is lacking. Based on known domains and structure predicitons, we expected full-length QKI6 to be flexible and carry disordered regions. Hence, we carried out biophysical and structural characterization of human QKI6. Results: We expressed and purified full-length QKI6 and characterized it using mass spectrometry, light scattering, small-angle X-ray scattering, and circular dichroism spectroscopy. QKI6 was monodisperse, folded, and mostly dimeric, being oxidation-sensitive. The C-terminal tail was intrinsically disordered, as predicted. In the absence of RNA, the RNA-binding subdomain is likely to present major flexibility. In thermal stability assays, a double sequential unfolding behaviour was observed in the presence of phosphate, which may interact with the RNA-binding domain. The results confirm the flexibility and partial disorder of QKI6, which may be functionally relevant.publishedVersio
Molecular Basis of eRF3 Recognition by the MLLE Domain of Poly(A)-Binding Protein
PABPC1 (cytosolic poly(A)-binding protein 1) is an RNA-binding protein that binds to the poly(A) tail of mRNAs to promote translation and mRNA turnover. In addition to RNA-binding domains, PABPC1 contains a unique protein-protein interaction domain, MLLE (also known as PABC) that binds regulatory proteins and translation factors that contain a conserved 12 amino acid peptide motif termed PAM2. Eukaryotic Release Factor 3 (eRF3/GSPT1) contains two overlapping PAM2 sequences, which are required for its activity. Here, we determined the crystal structures of the MLLE domain from PABPC1 in complex with the two PAM2 regions of eRF3. The structures reveal a mechanism of cooperativity between the two PAM2 sites that increases the binding affinity but prevents the binding of more than one molecule of eRF3 to PABPC1. Relative to previous structures, the high-resolution crystal structures force a re-evaluation of the PAM2 motif and improve our understanding of the molecular basis of MLLE peptide recognition
Structure and function of an atypical homodimeric actin capping protein from the malaria parasite
Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the beta-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a beta-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium
Crystal Structure of the S. solfataricus Archaeal Exosome Reveals Conformational Flexibility in the RNA-Binding Ring
The exosome complex is an essential RNA 3'-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry.Here we report an asymmetric 2.9 A Sulfolobus solfataricus archaeal exosome structure in which the three-fold symmetry is broken due to combined rigid body and thermal motions mainly within the RNA-binding ring. Since increased conformational flexibility was also observed in the RNA-binding ring of the related bacterial PNPase, we speculate that this may reflect an evolutionarily conserved mechanism to accommodate diverse RNA substrates for degradation.This study clearly shows the dynamic structures within the RNA-binding domains, which provides additional insights on mechanism of asymmetric RNA binding and processing
Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments
Background: Despite intense research, the causes of various neurological diseases remain enigmatic to date. A role for viral or bacterial infection and associated molecular mimicry has frequently been suggested in the etiology of neurological diseases, including demyelinating autoimmune disorders, such as multiple sclerosis. Pathogen mimics of myelin-derived autoimmune peptides have been described in the literature and shown to induce myelin autoimmune responses in animal models. Methods: We carried out a structural study on myelin-derived peptides, and mimics thereof from various pathogens, in aqueous and membrane-like environments, using conventional and synchrotron radiation circular dichroism spectroscopy. A total of 13 peptides from the literature were studied, and 290 circular dichroism spectra were analysed. In addition, peptide structure predictions and vesicle aggregation assays were performed. Results: The results indicate a high level of similarity in the biophysical and folding properties of the peptides from either myelin proteins or proteins from pathogenic viruses or bacteria; essentially all of the studied peptides folded in the presence of lipid vesicles or under other membrane-mimicking conditions, which is a sign of membrane interaction. Many of the peptides presented remarkable similarities in their conformation in different environments. Conclusions: As most of the studied epitope segments in myelin proteins are associated with membrane-binding sites, our results support a view of molecular mimicry, involving lipid membrane interaction propensity and similar conformational properties, possibly playing a role in demyelinating disease. The results suggest mechanisms related to protein amphiphilicity and order-disorder transitions in the recognition of peptide epitopes in autoimmune demyelination.publishedVersio
- β¦