661 research outputs found

    IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    Get PDF
    Background<p></p> The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis.<p></p> Objectives<p></p> We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis.<p></p> Methods<p></p> Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry.<p></p> Results<p></p> IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo.<p></p> Conclusions<p></p> IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner

    IL-15 and its role in rheumatoid arthritis

    Get PDF
    Background: IL-15 is involved in all phases of rheumatoid arthritis. Recently we have shown that rheumatoid arthritis synovial fibroblasts (RASF) express both IL-15 and functional IL-15 receptor [1]. Objective: The aim of present study was to identify pathways that are regulated by autocrine IL-15 (IL-15R) in RASF. Methods: RASF were transfected with plasmid encoding IL-15R antagonist (CRB-15, Cardion AG) or control constructs. RNA from transient transfectants were used for Microarray analysis. The differential expression of genes obtained by microarray analysis was verified by SYBR Green real-time PCR. The expression of IL-15Rα, cell proliferation and the expression of p16 and p21 were evaluated in stably transfected cells. Results: The IL-15R antagonist produced by transfected RASF blocked the endogenous IL-15/IL-15Rα interaction, which resulted in an inhibition of cell proliferation (45 ± 10%) via an increase of the expression of p16. In addition, we found that inhibition of IL-15Rα induced the expression of mRNA for FGFR-3. Since two isoforms of FGFR-3 have been identified (FGFR-3b and FGFR-3c) [2], we tested the effect of IL-15Rα inhibition on their expression. In contrast to FGFR-3b, the level of mRNA for FGFR-3c was strongly increased in cells transfected with the IL-15R antagonist (4.71 ± 2.5 in transient transfectants and 6.1 ± 1 fold in stable transfectants). FGFR-3c isoform binds specifically FGF-9, but also FGF-2 [2]. Besides FGFR-3, FGF-2 that is abundant in RA joints binds to FGFR-1. In vitro studies revealed that FGFR-1 transmits a potent mitogenic signal, whereas FGFR-3 usually has no stimulatory effect or inhibits cell proliferation. In contrast to FGFR-3c, blocking of IL-15Rα did not change the mRNA expression for FGFR-1 in RASF. Moreover, we checked whether FGF-2 affects the expression of IL-15Rα. Indeed, FGF-2 strongly decreased the spontaneous and tumor necrosis factor alpha-triggered expression of IL-15Rα at the mRNA and protein levels. Conclusion: Our findings raise the possibility of a negative loop between FGF-2/FGFR-3c and IL-15/IL-15R signaling in RASF. Moreover, the activation of RASF by FGFs could depend on the ratio of FGFR-1/FGFR-3 expression, which is controlled by the endogenous IL-15/IL-15R system

    Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    Get PDF
    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes

    MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice

    Get PDF
    Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes

    Is it the end of TILLING era in plant science?

    Get PDF
    Since its introduction in 2000, the TILLING strategy has been widely used in plant research to create novel genetic diversity. TILLING is based on chemical or physical mutagenesis followed by the rapid identification of mutations within genes of interest. TILLING mutants may be used for functional analysis of genes and being nontransgenic, they may be directly used in pre-breeding programs. Nevertheless, classical mutagenesis is a random process, giving rise to mutations all over the genome. Therefore TILLING mutants carry background mutations, some of which may affect the phenotype and should be eliminated, which is often time-consuming. Recently, new strategies of targeted genome editing, including CRISPR/Cas9-based methods, have been developed and optimized for many plant species. These methods precisely target only genes of interest and produce very few off-targets. Thus, the question arises: is it the end of TILLING era in plant studies? In this review, we recap the basics of the TILLING strategy, summarize the current status of plant TILLING research and present recent TILLING achievements. Based on these reports, we conclude that TILLING still plays an important role in plant research as a valuable tool for generating genetic variation for genomics and breeding projects

    The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release

    Get PDF
    <p>Objectives: Macrophages are central to the inflammatory processes driving rheumatoid arthritis (RA) synovitis. The molecular pathways that are induced in synovial macrophages and thereby promote RA disease pathology remain poorly understood.</p> <p>Methods: We used microarray to characterise the transcriptome of synovial fluid (SF) macrophages compared with matched peripheral blood monocytes from patients with RA (n=8).</p> <p>Results: Using in silico pathway mapping, we found that pathways downstream of the cholesterol activated liver X receptors (LXRs) and those associated with Toll-like receptor (TLR) signalling were upregulated in SF macrophages. Macrophage differentiation and tumour necrosis factor α promoted the expression of LXRα. Furthermore, in functional studies we demonstrated that activation of LXRs significantly augmented TLR-driven cytokine and chemokine secretion.</p> <p>Conclusions: The LXR pathway is the most upregulated pathway in RA synovial macrophages and activation of LXRs by ligands present within SF augments TLR-driven cytokine secretion. Since the natural agonists of LXRs arise from cholesterol metabolism, this provides a novel mechanism that can promote RA synovitis.</p&gt

    The inhibitor of differentiation-2 promotes synovial fibroblast-dependent osteoclastogenesis in rheumatoid arthritis

    Get PDF
    Objectives: Despite indirect evidence suggesting that low oxygen levels might occur in the rheumatoid arthritis (RA) synovium, direct proof of the presence of hypoxia in the arthritic synovium as well as the relevance of low oxygen levels for joint destruction is lacking. The aim of this study was to analyse the distribution of hypoxia in arthritic joints and to evaluate the molecular effects of the hypoxic environment on the phenotype of RA synovial fibroblasts (SF).<p></p> Methods: The hypoxia marker EF-5 was applied in mice with the collagen-induced arthritis (CIA). Expression profile analysis with hypoxic and normoxic SF was performed using subtractive hybridization and microarray. The expression of the inhibitor of differentiation-2 (Id-2), CD68 (macrophage marker) and prolyl hydroxylase (fibroblast marker) was evaluated by immunohistochemistry on synovial tissues from RA, osteoarthritis patients and CIA mice. To evaluate the function of Id-2 in SF, cells were transfected with the pcDNA3.1 containing cDNA for Id-2 or Id-2-specific siRNA or mock controls. The expression of Id-2 and genes regulated by Id-2 in transfected SF was evaluated by SYBR Green real-time PCR and western blot. SF stably transfected with Id-2 were cocultured with bone marrow cells in a transwell system. The expression of the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin were measured by real-time PCR. The development of osteoclasts was evaluated by visualization of the activity of tartrate-resistant acid phosphatase.<p></p> Results: Using the hypoxia marker EF-5 we found that in mice with CIA, synovial cells invading bone and cartilage are exposed to reduced oxygen levels. Expression profile studies identified Id-2 as being upregulated under low oxygen conditions. In addition, IL-1beta stimulation increased the expression of Id-2 in these cells. Histological studies of RA synovium and CIA synovium showed strong expression of Id-2 in SF at sites of synovial invasion into bone. Overproduction of Id-2 in SF by stable transfection triggered the expression of several genes promoting osteoclastogenesis, including BMP-2, PTHrP, Wnt5a and vascular endothelial growth factor. Conversely, the suppression of endogenous Id-2 led to the downregulation of the expression of these molecules. Consistent with these findings coculture of Id-2 transfected SF with bone marrow cells increased the expression of the osteoclast differentiation factor RANKL, and decreased the expression of the osteoclast inhibitory factor osteoprotegerin in bone marrow stromal cells, which was followed by an increase in the number of osteoclasts.<p></p> Conclusion: Taken together, our data provide evidence that hypoxia is present at sites of synovial invasion in RA and that Id-2 induced by hypoxia contributes at these sites to joint destruction by promoting SF-dependent osteoclastogenesis
    corecore