22 research outputs found
The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora
Forest trees are colonised by different species of ectomycorrhizal (ECM) fungi that interact competitively or mutualistically with one another. Most ECM fungi can produce sporocarps. To date, the effects of co-colonising fungal species on sporocarp formation in ECM fungi remain unknown. In this study, we examined host plant growth, mycorrhizal colonisation, and sporocarp formation when roots of Pinus densiflora are colonised by Laccaria japonica and three other ECM fungal species (Cenococcum geophilum, Pisolithus sp., and Suillus luteus). Sporocarp numbers were recorded throughout the experimental period. The biomass, photosynthetic rate, and mycorrhizal colonisation rate of the seedlings were also measured at 45days, 62days, and 1year after seedlings were transplanted. Results indicated that C. geophilum and S. luteus may negatively impact mycorrhizal colonisation and sporocarp formation in L. japonica. Sporocarp formation in L. japonica was positively correlated with conspecific mycorrhizal colonisation but negatively correlated with the biomass of seedlings of P. densiflora. The co-occurring ECM fungi largely competed with L. japonica, resulting in various effects on mycorrhizal colonisation and sporocarp formation in L. japonica. A variety of mechanisms may be involved in the competitive interactions among the different ECM fungal species, including abilities to more rapidly colonise root tips, acquire soil nutrients, or produce antibiotics. These mechanisms need to be confirmed in further studies.Peer reviewe
Bioactive properties of streptomyces may affect the dominance of Tricholoma matsutake in shiro
Tricholoma matsutake is known to be the dominant fungal species in matsutake fruitbody neighboring (shiro) soil. To understand the mechanisms behind matsutake dominance, we studied the bacterial communities in matsutake dominant shiro soil and non-shiro soil, isolated the strains of Streptomyces from matsutake mycorrhizal root tips both from shiro soil and from the Pinus densiflora seedlings cultivated in shiro soil. Further, we investigated three Streptomyces spp. for their ability to inhibit fungal growth and Pinus densiflora seedling root elongation as well as two strains for their antifungal and antioxidative properties. Our results showed that Actinobacteria was the most abundant phylum in shiro soil. However, the differences in the Actinobacterial community composition (phylum or order level) between shiro and non-shiro soils were not significant, as indicated by PERMANOVA analyses. A genus belonging to Actinobacteria, Streptomyces, was present on the matsutake mycorrhizas, although in minority. The two antifungal assays revealed that the broths of three Streptomyces spp. had either inhibitory, neutral or promoting effects on the growth of different forest soil fungi as well as on the root elongation of the seedlings. The extracts of two strains, including one isolated from the P. densiflora seedlings, inhibited the growth of either pathogenic or ectomycorrhizal fungi. The effect depended on the medium used to cultivate the strains, but not the solvent used for the extraction. Two Streptomyces spp. showed antioxidant activity in one out of three assays used, in a ferric reducing antioxidant power assay. The observed properties seem to have several functions in matsutake shiro soil and they may contribute to the protection of the shiro area for T. matsutake dominance.Peer reviewe
Fine-scale initiation of non-native Robinia pseudoacacia riparian forests along the Chikumagawa River in central Japan
International audience(Loi n° 91-650 du 9 juill. 1991, art. 47
The populations and distribution of <i>Pieris japonica</i>, a poisonous tree protected from herbivore browsing pressure, increase slowly but steadily
<p><i>Pieris japonica</i> is a poisonous tree species that is rarely eaten by herbivorous animals, a fact that could enable the expansion of its distribution range and influence ecosystems into which it encroaches. In a regional-scale study, 300 <i>P. japonica</i> trees from 13 populations were sampled at the University of Tokyo Chichibu Forest, Japan, and were analyzed using 11 microsatellite markers. Genetic differentiation among the populations was low (<i>F</i><sub>ST</sub> = 0.022 and <i>G′</i><sub>ST</sub> = 0.024). A plot (30 × 30 m) was established for a fine-scale study, in which all <i>P. japonica</i> trees and saplings were measured and genetically analyzed using the microsatellite markers. Using this approach, we detected 84 genotypes among the 121 <i>P. japonica</i> trees in the plot. A few genotypes had expanded by more than 5 m, indicating that the ability to reproduce asexually could facilitate <i>P. japonica</i> trees to remain in a given location. Autocorrelation analysis showed that the extent of nonrandom spatial genetic structure was approximately 7.0 m, suggesting that seed dispersal was limited. KINGROUP analyses showed that 44 genotype pairs were full siblings, 23 were half-siblings, and 40 were parent-offspring. Only 32 seedlings were observed, of which 15 had reproduced asexually. The number of <i>P. japonica</i> trees has been increasing gradually for more than half a century in our study areas.</p
Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of <i>Syzygium kunstleri</i> (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium
Trees growing in wetlands develop adventitious roots from the trunk during the rainy season and adapt to the flooded environment by forming primary (schizogenous or lysigenous) and secondary aerenchyma in the roots. Therefore, it is necessary to clarify the formation process of each type of aerenchyma in these adventitious roots. In this study, saplings of Syzygium kunstleri (King) Bahadur and R.C.Gaur were grown under four different treatments, and a total of 12 adventitious roots generated from trunks were used to clarify the distribution of each aerenchyma type in the roots using light or epi-florescence microscopy. Schizogenous aerenchyma was observed in the root tips where the root color was white or light brown, whereas lysigenous aerenchyma was found at some distance from the root tip where the root color gradually changed from light to dark brown. The secondary aerenchyma and periderm were observed in dark brown parts near the root base. None or only one layer of phellem cells was detected in the white roots near the root tip, but dark brown roots near the root base had at least three layers of phellem cells. Considering these results, oxygen transportation may occur between primary and secondary aerenchyma at the point where two or more layers of phellem cells are formed
Local-Level Genetic Diversity and Structure of Matsutake Mushroom (Tricholoma matsutake) Populations in Nagano Prefecture, Japan, Revealed by 15 Microsatellite Markers
The annual yield of matsutake mushrooms (Tricholoma matsutake) has consistently decreased in Japan over the past few decades. We used 15 polymorphic and codominant simple sequence repeat (SSR) markers, developed using next-generation sequencing, to carry out genetic analyses of 10 populations in Nagano, Japan. Using the SSRs, we identified 223 genotypes, none of which was observed in more than one population. The mean expected heterozygosity and standardized allelic richness values were 0.67 and 4.05, respectively. Many alleles appeared in only one of the 10 populations; 34 of these private alleles were detected with a mean number per population of 3.4. The fixation index (FST) and standardized genetic differentiation (G′ST) values were 0.019 and 0.028, respectively. Analysis of molecular variance (AMOVA) showed that the contribution of among population, among genets within a population, and within genets variation to the total variation was 2.91%, 11.62%, and 85.47%, respectively, with genetic differentiation being detected for all sources. Twenty-eight of 45 pairwise FST values were significantly larger than zero, and no pattern of isolation by distance was detected among the 10 populations. Bayesian-based clustering did not show clear differences among populations. These results suggest that reestablishment of a colony would be best accomplished by transplantation within a field; if this is not possible, then transplantation from within several dozen kilometers will cause little damage to the original population genetic structure
Transcriptional Responses of a Bicarbonate-Tolerant Monocot, Puccinellia tenuiflora, and a Related Bicarbonate-Sensitive Species, Poa annua, to NaHCO3 Stress
Puccinellia tenuiflora is an alkaline salt-tolerant monocot found in saline-alkali soil in China. To identify the genes which are determining the higher tolerance of P. tenuiflora compared to bicarbonate sensitive species, we examined the responses of P. tenuiflora and a related bicarbonate-sensitive Poeae plant, Poa annua, to two days of 20 mM NaHCO3 stress by RNA-seq analysis. We obtained 28 and 38 million reads for P. tenuiflora and P. annua, respectively. For each species, the reads of both unstressed and stressed samples were combined for de novo assembly of contigs. We obtained 77,329 contigs for P. tenuiflora and 115,335 contigs for P. annua. NaHCO3 stress resulted in greater than two-fold absolute expression value changes in 157 of the P. tenuiflora contigs and 1090 of P. annua contigs. Homologs of the genes involved in Fe acquisition, which are important for the survival of plants under alkaline stress, were up-regulated in P. tenuiflora and down-regulated in P. annua. The smaller number of the genes differentially regulated in P. tenuiflora suggests that the genes regulating bicarbonate tolerance are constitutively expressed in P. tenuiflora
May Matsutake mycorrhiza-associated Streptomycetes distinguish friend and foe in shiro, the evidences from in vitro studies
Abstrakti O62201