8 research outputs found

    Blood flow velocity measurements in chicken embryo vascular network via PIV approach

    Get PDF
    A method for measuring of blood velocity in the native vasculature of a chick embryo by the method of micro anemometry from particle images (μPIV) is improved. A method for interrogation regions sorting by the mask of the vasculature is proposed. A method for sorting of the velocity field of capillary blood flow is implemented. The in vitro method was evaluated for accuracy in a glass phantom of a blood vessel with a diameter of 50 μm and in vivo on the bloodstream of a chicken embryo, by comparing the transverse profile of the blood velocity obtained by the PIV method with the theoretical Poiseuille laminar flow profile

    Adaptive μPIV for visualization of capillary network microcirculation using Niblack local binarization

    No full text
    We present adaptive micro-scale Particle Image Velocimetry (μPIV) technique for visualization of the capillary network blood flow microcirculation. The main idea of our method is a centering of the interrogation regions (IR) of the μPIV technique via capillary network masks. These masks were obtained by the algorithm of Niblack local binarization of the capillary network images for the each frame. Due to the inhomogeneous of red blood cells (RBCs) distribution, we have summarized the masks across a whole series of masks. The blood flow velocity map was measured within the limits of the resulting the mask. We illustrate step-by-step the blood flow velocity measurement method and we reconstruct velocity map for chorioallantoic membrane (CAM) of chicken embryo

    Adaptive μPIV for visualization of capillary network microcirculation using Niblack local binarization

    No full text
    We present adaptive micro-scale Particle Image Velocimetry (μPIV) technique for visualization of the capillary network blood flow microcirculation. The main idea of our method is a centering of the interrogation regions (IR) of the μPIV technique via capillary network masks. These masks were obtained by the algorithm of Niblack local binarization of the capillary network images for the each frame. Due to the inhomogeneous of red blood cells (RBCs) distribution, we have summarized the masks across a whole series of masks. The blood flow velocity map was measured within the limits of the resulting the mask. We illustrate step-by-step the blood flow velocity measurement method and we reconstruct velocity map for chorioallantoic membrane (CAM) of chicken embryo

    Plug-and-Play Lymph Node-on-Chip: Secondary Tumor Modeling by the Combination of Cell Spheroid, Collagen Sponge and T-Cells

    No full text
    Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue. This collagen sponge has a morphology and porosity comparable to that of a native human LN. To demonstrate the suitability of the obtained chip for pharmacological applications, we used it to evaluate the effect of contrast agent/drug carrier size, on the penetration and accumulation of particles in 3D spheroids modeling secondary tumor. For this, the 0.3, 0.5 and 4 μm bovine serum albumin (BSA)/tannic acid (TA) capsules were mixed with lymphocytes and pumped through the developed chip. The capsule penetration was examined by scanning with fluorescence microscopy followed by quantitative image analysis. The results show that capsules with a size of 0.3 μm passed more easily to the tumor spheroid and penetrated inside. We hope that the device will represent a reliable alternative to in vivo early secondary tumor models and decrease the amount of in vivo experiments in the frame of preclinical study

    Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers

    No full text
    Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair

    Pre-Senescence Induction in Hepatoma Cells Favors Hepatitis C Virus Replication and Can Be Used in Exploring Antiviral Potential of Histone Deacetylase Inhibitors

    No full text
    Recent evidence suggests that fibrotic liver injury in patients with chronic hepatitis C correlates with cellular senescence in damaged liver tissue. However, it is still unclear how senescence can affect replication of the hepatitis C virus (HCV). In this work, we report that an inhibitor of cyclin-dependent kinases 4/6, palbociclib, not only induced in hepatoma cells a pre-senescent cellular phenotype, including G1 arrest in the cell cycle, but also accelerated viral replicon multiplication. Importantly, suppression of HCV replication by direct acting antivirals (DAAs) was barely affected by pre-senescence induction, and vice versa, the antiviral activities of host-targeting agents (HTAs), such as inhibitors of human histone deacetylases (HDACi), produced a wide range of reactions—from a dramatic reduction to a noticeable increase. It is very likely that under conditions of the G1 arrest in the cell cycle, HDACi exhibit their actual antiviral potency, since their inherent anticancer activity that complicates the interpretation of test results is minimized
    corecore