36 research outputs found
Disruptive effects of plasticizers bisphenol A, F, and S on steroidogenesis of adrenocortical cells
IntroductionEndocrine disrupting chemicals (EDCs) are known to interfere with endocrine homeostasis. Their impact on the adrenal cortex and steroidogenesis has not yet been sufficiently elucidated. This applies in particular to the ubiquitously available bisphenols A (BPA), F (BPF), and S (BPS).MethodsNCI-H295R adrenocortical cells were exposed to different concentrations (1nM-1mM) of BPA, BPF, BPS, and an equimolar mixture of them (BPmix). After 72 hours, 15 endogenous steroids were measured using LC-MS/MS. Ratios of substrate and product of CYP-regulated steps were calculated to identify most influenced steps of steroidogenesis. mRNA expression of steroidogenic enzymes was determined by real-time PCR.ResultsCell viability remained unaffected at bisphenol concentrations lower than 250 µM. All tested bisphenols and their combination led to extensive alterations in the quantified steroid levels. The most profound fold changes (FC) in steroid concentrations after exposure to BPA (>10µM) were seen for androstenedione, e.g. a 0.37±0.11-fold decrease at 25µM (p≤0.0001) compared to vehicle-treated controls. For BPF, levels of 17-hydroxyprogesterone were significantly increased by 25µM (FC 2.57±0.49, p≤0.001) and 50µM (FC 2.65±0.61, p≤0.0001). BPS treatment led to a dose-dependent decrease of 11-deoxycorticosterone at >1µM (e.g. FC 0.24±0.14, p≤0.0001 at 10µM). However, when combining all three bisphenols, additive effects were detected: e.g. 11-deoxycortisosterone was decreased at doses >10µM (FC 0.27±0.04, p≤0.0001, at 25µM), whereas 21-deoxycortisol was increased by 2.92±0.20 (p≤0.01) at 10µM, and by 3.21±0.45 (p≤0.001) at 50µM. While every measured androgen (DHEA, DHEAS, androstenedione, testosterone, DHT) was lowered in all experiments, estradiol levels were significantly increased by BPA, BPF, BPS, and BPmix (e.g. FC 3.60±0.54, p≤0.0001 at 100µM BPF). Calculated substrate-product ratios indicated an inhibition of CYP17A1-, and CYP21A2 mediated conversions, whereas CYP11B1 and CYP19A1 showed higher activity in the presence of bisphenols. Based on these findings, most relevant mRNA expression of CYP genes were analysed. mRNA levels of StAR, CYP11B1, and CYP17A1 were significantly increased by BPF, BPS, and BPmix.DiscussionIn cell culture, bisphenols interfere with steroidogenesis at non-cytotoxic levels, leading to compound-specific patterns of significantly altered hormone levels. These results justify and call for additional in-vivo studies to evaluate effects of EDCs on adrenal gland functionality
Emergency treatment of adrenal crisis with prednisone suppositories: a bioequivalence study in female patients with Addison’s disease
Objective: Patients with adrenal insufficiency (AI) need to adapt their glucocorticoid replacement under stressful conditions to prevent adrenal crisis s (AC). Prednisone (PN) suppositories are used for emergency treatment. Pharmacokinetics of 100 mg PN suppositories after vaginal or rectal administration was evaluated.
Design: Single-center, open-label, sequence-randomized, cross-over, bioequivalence study.
Methods: Twelve females with primary AI were included. Comparison of pharmacokinetics after vaginal and rectal administration of 100 mg PN suppositories. Main outcome measures: bioequivalence (Cmax: maximum plasma concentration of prednisolone; AUC0–360: area under the plasma concentration curve of prednisolone from administration to 360 min), adrenocorticotropin (ACTH) levels, safety and tolerability. Comparison of ACTH-suppressive effect with subcutaneous and
intramuscular administration of 100 mg hydrocortisone.
Results: Vaginal administration of PN suppositories was not bioequivalent to rectal administration: Cmax and AUC0–360 were significantly lower after vaginal compared to rectal administration: 22 ng/mL (109%) vs 161 ng/mL (28%), P 50% of baseline values was observed 149 min (32%) after rectal PN administration; after vaginal PN administration, the maximum decrease within 360 min was only 44%. Adverse events were more frequent after vaginal administration and mainly attributable to the glucocorticoid deficit due to inadequate vaginal absorption. The ACTH-suppressive effect was more pronounced after parenteral hydrocortisone compared to rectal or vaginal PN.
Conclusion: Vaginal administration of PN suppositories in the available form is not useful for prevention of AC. Pharmacokinetics after rectal use of PN s how inferiority compared to available data on parenteral glucocorticoids. In adrenal emergencies, hydrocortisone injection should be the first choice
FSCN1 as a new druggable target in adrenocortical carcinoma
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high risk of relapse and metastatic spread. The actin-bundling protein fascin (FSCN1) is overexpressed in aggressive ACC and represents a reliable prognostic indicator. FSCN1 has been shown to synergize with VAV2, a guanine nucleotide exchange factor for the Rho/Rac GTPase family, to enhance the invasion properties of ACC cancer cells. Based on those results, we investigated the effects of FSCN1 inactivation by CRISPR/Cas9 or pharmacological blockade on the invasive properties of ACC cells, both in vitro and in an in vivo metastatic ACC zebrafish model. Here, we showed that FSCN1 is a transcriptional target for β-catenin in H295R ACC cells and that its inactivation resulted in defects in cell attachment and proliferation. FSCN1 knock-out modulated the expression of genes involved in cytoskeleton dynamics and cell adhesion. When Steroidogenic Factor-1 (SF-1) dosage was upregulated in H295R cells, activating their invasive capacities, FSCN1 knock-out reduced the number of filopodia, lamellipodia/ruffles and focal adhesions, while decreasing cell invasion in Matrigel. Similar effects were produced by the FSCN1 inhibitor G2-044, which also diminished the invasion of other ACC cell lines expressing lower levels of FSCN1 than H295R. In the zebrafish model, metastases formation was significantly reduced in FSCN1 knock-out cells and G2-044 significantly reduced the number of metastases formed by ACC cells. Our results indicate that FSCN1 is a new druggable target for ACC and provide the rationale for future clinical trials with FSCN1 inhibitors in patients with ACC
Isosexual precocious pseudopuberty during mitotane treatment in a child with adrenocortical carcinoma:A case report
Background Mitotane is employed as adjuvant therapy in managing adrenocortical carcinoma in pediatric patients. While various adverse effects, such as estrogen-like manifestations, are well-documented in adults, there is limited knowledge regarding pediatric-specific toxicity. This report details an uncommon case of isosexual precocious pseudopuberty induced during childhood due to the estrogen-like effects of mitotane. Case report A 2.8-year-old female diagnosed with adrenocortical carcinoma (pT4 pN0 M0) underwent adjuvant treatment with mitotane and cytotoxic chemotherapy following incomplete resection (tumor stage III). Approximately eight months into mitotane treatment, she exhibited signs of puberty (Tanner stage 2), including progressive breast development, uterine enlargement, vaginal discharge, and an advancement of bone age by nearly two years. Gonadotrophin-dependent puberty and endogenous estrogen production were ruled out. The precocious pseudopuberty was attributed to previously reported estrogen-like effects of mitotane therapy. Subsequent administration of the aromatase inhibitor anastrozole in combination with mitotane led to a reduction in clinical signs of puberty. Conclusion Monitoring for estrogen-like effects of mitotane is crucial, particularly in pre-pubertal children, to avert potentially irreversible changes associated with precocious pseudopuberty. Aromatase inhibitors may serve as a prompt therapeutic option, enabling the continuation of mitotane treatment
Isosexual precocious pseudopuberty during mitotane treatment in a child with adrenocortical carcinoma: A case report
Background: Mitotane is employed as adjuvant therapy in managing adrenocortical carcinoma in pediatric patients. While various adverse effects, such as estrogen-like manifestations, are well-documented in adults, there is limited knowledge regarding pediatric-specific toxicity. This report details an uncommon case of isosexual precocious pseudopuberty induced during childhood due to the estrogen-like effects of mitotane. Case report: A 2.8-year-old female diagnosed with adrenocortical carcinoma (pT4 pN0 M0) underwent adjuvant treatment with mitotane and cytotoxic chemotherapy following incomplete resection (tumor stage III). Approximately eight months into mitotane treatment, she exhibited signs of puberty (Tanner stage 2), including progressive breast development, uterine enlargement, vaginal discharge, and an advancement of bone age by nearly two years. Gonadotrophin-dependent puberty and endogenous estrogen production were ruled out. The precocious pseudopuberty was attributed to previously reported estrogen-like effects of mitotane therapy. Subsequent administration of the aromatase inhibitor anastrozole in combination with mitotane led to a reduction in clinical signs of puberty. Conclusion: Monitoring for estrogen-like effects of mitotane is crucial, particularly in pre-pubertal children, to avert potentially irreversible changes associated with precocious pseudopuberty. Aromatase inhibitors may serve as a prompt therapeutic option, enabling the continuation of mitotane treatment
Distribution and metabolism of different constituents of a standardized French maritime pine extract (pinus pinaster) in the human blood
Sekundäre Pflanzenstoffe zeichnen sich wegen ihrer heterogenen Zusammensetzung und großen Strukturvariabilität durch eine komplexe Pharmakokinetik aus. Wissen um die Pharmakokinetik ist wiederum für die Beurteilung von pharmakodynamischen Prozessen unabdingbar. Ziel dieser Arbeit war es durch die Bestimmung wichtiger pharmakokinetischer Parameter zur Erweiterung des Verständnisses um die Verteilung von verschiedenen Bestandteilen und Metaboliten eines standardisierten Extraktes der französischen Meereskieker (pinus pinaster) im menschlichen Körper beizutragen. Es erfolgte zunächst, unter Verwendung zweier verschiedener Methoden, die Bestimmung der Plasmaproteinbindung dieser Substanzen. Hierbei fand eine affinitätschromatographische Methode mit immobilisiertem Albumin Anwendung. Die Flavonoide Taxifolin, (+)-Catechin sowie das Catechindimer Procyanidin B1 zeigten eine, aufgrund der vorliegenden Polyphenolstruktur der Substanzen gut erklärbare ausgeprägte Bindung, während für Kaffesäure, Ferulasäure und ein δ-(3,4-Dihydroxyphenyl)-γ-valerolacton (Metabolit M1), das in vivo als Metabolit aus(+)-Catechin gebildet wird, eine wesentlich geringere Affinität zu Albumin ermittelt werden konnte. Desweiteren kam eine Filtrationsmethode zur Anwendung, die durch Abtrennung der Proteine aus dem Plasma eine Bestimmung der Bindung ermöglichte. Um die in Vorversuchen gezeigte ausgeprägte unspezifische Bindung der Flavonoide (+)-Catechin und Taxifolin an Membran- und Gefäßoberflächen zu minimieren wurde eine Vorbehandlung der Membranen vorgenommen. Die Resultate beider Methoden zeigten eine gute Übereinstimmung, ausgenommen der bei der Ultrafiltration erhaltenen geringen Proteinbindung des Procyanidin B1. Auch die Ultrafiltrationsmethode ergab für Taxifolin und (+)-Catechin eine beinahe vollständige Bindung. Für die Phenolcarbonsäuren Ferulasäure und Kaffeesäure sowie den Metaboliten M1 hingegen ergaben sich geringere Affinitäten so dass die Ergebnisse der affinitätschromatographischen Methode bestätigt und durch die Verwendung von zwei verschiedenen unabhängigen Bestimmungsansätzen eine gesteigerte Aussagekraft der Resultate erreicht werden konnte. Eine weitere Ergänzung der Aufklärung des pharmakokinetischen Profils erfolgte durch die Ermittlung der Verteilung dieser Substanzen zwischen Plasma und verschiedenen Blutzellen. Insbesondere für den Metaboliten M1 zeigte sich bei einigen der Versuche eine ausgeprägte Affinität zu Erythrozyten und mononukleären Zellen. Ob diesem Phänomen möglicherweise aktive Transportmechanismen zu Grunde lagen sollte durch weiterführende Betrachtungen geklärt werden. Die Untersuchungen ergaben, dass an dieser Verteilung weder ein Aminosäuretransporter noch das para-Glykoprotein beteiligt gewesen waren, jedoch ließen ergänzende Versuche den Schluss zu, dass eine erleichterte Diffusion in das Zellinnere durch den Glucose-Transporter GLUT-1 ermöglicht werden könnte. Diese Vermutung wurde durch vergleichende Energiefeld-,Oberflächen-, und Volumenberechnungen zwischen dem natürlichen Substrat des Transporters Glucose und dem Metaboliten M1 gestützt. Aufbauend auf den Ergebnissen der Verteilungsversuche wurde ein möglicher intrazellulärer Metabolismus der Substanzen in Erythrozyten und mononukleären Zellen, insbesondere durch Reaktionen des Phase II Metabolismus, untersucht. Mittels massenspektrometrischer Untersuchungen konnten Hinweise auf die Bildung eines Addukts zwischen Glutathion und dem Metaboliten M1 in Erythrozyten gefunden werden. Abschließend wurde durch die Bestimmung der protektiven Eigenschaften des Metaboliten M1 gegen oxidative Schädigungen der Erythrozytenmembran auch ein pharmakodynamischer Aspekt dieser Verbindung hinzugefügt. Zwar zeigte sich bereits in einem Konzentrationsbereich von 1 μM eine ausgeprägte antioxidative Aktivität des Metaboliten M1, jedoch konnte kein Hinweis auf Beeinflussung oxidativer Membranschädigungen durch möglicherweise intrazellulär gebildete Konjugate obiger Verbindung gefunden werden. Im Rahmen dieser Arbeit konnten für verschiedene Bestandteile eines Kiefernrindenextraktes und ein δ-(3,4-Dihydroxyphenyl)-γ-valerolacton Plasmaproteinbindungen und erstmals die Verteilung dieser Substanzen zwischen Plasma und Blutzellen ermittelt werden. Insbesondere die in einigen Versuchen gezeigte Aufnahme bzw. Adsorption könnte einen Beitrag zur Klärung der Beobachtung liefern, dass eine deutliche Diskrepanz gefunden wurde zwischen in vivo gemessenen Plasmakonzentrationen, welche in vitro nicht ausreichend sind um deutliche Effekte auszulösen und Ergebnissen aus ex vivo Untersuchungen, die eine deutliche Beeinflussung insbesondere antiinflammatorischer Prozesse zeigten.Secondary plant compounds are characterized by complex pharmacokinetics due to their heterogeneous composition and distinct variability of formation. Knowledge is indispensable about pharmacokinetics for estimation of pharmacodynamic effects. The objective of this thesis was to contribute to the knowledge of distribution of different constituents of a standardized French maritime pine extract (pinus pinaster) in the human body. At first two different methods were used to determine the plasma protein binding of these substances. An affinity chromatographic method using immobilized albumin was applied. The flavonoids taxifolin, (+)-catechin and the dimer procyanidin B1 revealed a pronounced binding due to their polyphenolic structures while a considerably lower affinity to albumin was found for caffeic acid, ferulic acid and δ-(3,4-dihydroxyphenyl)-γ-valerolactone (metabolite M1), an in vivo formed metabolite from (+)-catechin. Additionally a filtration method was used which allowed to quantify the extent of binding by separating the proteins from the plasma. Owing to the relatively lipophilic properties of the flavonoids (+)-catechin and taxifolin membranes were pretreated to reduce the non specific binding to surfaces. The results of both methods showed good agreement, except for a lower protein binding of procyanidin B1 observed by the ultrafiltration method. Taxifolin and (+)-catechin displayed almost complete protein binding in the affinity chromatography and the ultrafiltration method. For the phenolic acids ferulic acid, caffeic acid and the metabolite M1, however, there was lower affinity and these results were consistend with the data obtained by affinity chromatography confirming the validity of the results. Further investigations regarding the pharmacokinetic profile included determining the distribution of these substances between plasma and blood cells. Particularly a pronounced binding of the metabolite M1 to erythrocytes and mononuclear cells was found. Whether an active transport underlied this phenomenon mechanisms should be clarified by further investigations. The experiments showed that this distribution was neither influenced by amino acid transporters nor that the para glycoprotein was involved. But based on additional testing it was concluded that a facilitated diffusion of M1 was mediated by the glucose transporter GLUT-1. This assumption was supported by comparative force field, surface and volume calculations between the natural substrate of the transporter glucose and the metabolite M1. A potential intracellular phase II metabolism of the compounds in erythrocytes and mononuclear cells was examined based on the results of partition experiments. Mass spectrometric investigations revealed an adduct formation between glutathione and the metabolite M1 in human erythrocytes. Finally, by determining the protective properties of the metabolite M1 against oxidative damage of erythrocyte membrane, a pharmacodynamic aspect of this compound was added. Strong antioxidant activity occurred for the metabolite M1 already in a concentration range of 1 μM. However, obviously any intracellulary formed glutathione metabolite did not contribute to this effect. Within the scope of this work the first time plasma protein binding and the distribution between plasma and blood cells were determined for different compounds and a metabolite of a maritime pine extract. Especially the uptake of the compounds into blood cells might contribute to explain the observation that a significant discrepancy is found between in vivo measured and antiinflammatorily effective plasma concentrations and the fact that these concentrations are not sufficient to trigger significant effects in vitro
Facilitated Uptake of a Bioactive Metabolite of Maritime Pine Bark Extract (Pycnogenol) into Human Erythrocytes
Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated
Influence of the stop solution on the uptake of M1 into human erythrocytes.
<p>In an initial experiment the distribution of different concentrations of the metabolite M1 was analyzed in the absence and presence of glucose (100 mM) with and without addition of a stop solution containing phloretin (200 µM) and cytochalasin B (20 µM). Data points of the experiments with stop solution (solid lines) represent the mean and mean deviation of the mean of three replicates, the data points without stop solution (dashed lines) were single experiments.</p
Protection of erythrocytes against oxidative haemolysis in the presence of M1.
<p>Haemolysis of a 1% human erythrocytes suspension in the presence of the metabolite M1 (1 µM) was determined in an AAPH-assay. Erythrocytes were either co-incubated with M1 (left column) or pre-incubated with M1 for 60 min (right column), and delay of haemolysis was determined with reference to an incubation mixture without addition of M1. Columns represent the mean and standard deviation of three replicates.</p