24 research outputs found

    Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths

    Get PDF
    A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria

    Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches (A joint NASA/FAA report)

    Get PDF
    Flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 aircraft during conventional and two-segment instrument landing approaches. Smoke generators were used for vortex marking. The vortex was intentionally intercepted by a Lear Jet and a Piper Comanche aircraft. The vortex location during landing approach was measured using a system of phototheodolites. The tests showed that at a given separation distance there are no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. The effect of the aircraft configuration on the extent and severity of the vortices is discussed

    A Hierarchy of Scheduler Classes for Stochastic Automata

    Get PDF
    Stochastic automata are a formal compositional model for concurrent stochastic timed systems, with general distributions and non-deterministic choices. Measures of interest are defined over schedulers that resolve the nondeterminism. In this paper we investigate the power of various theoretically and practically motivated classes of schedulers, considering the classic complete-information view and a restriction to non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic reachability. We find that, unlike Markovian formalisms, stochastic automata distinguish most classes even in this basic setting. Verification and strategy synthesis methods thus face a tradeoff between powerful and efficient classes. Using lightweight scheduler sampling, we explore this tradeoff and demonstrate the concept of a useful approximative verification technique for stochastic automata

    Lightweight Statistical Model Checking in Nondeterministic Continuous Time

    Get PDF
    Lightweight scheduler sampling brings statistical model checking to nondeterministic formalisms with undiscounted properties, in constant memory. Its direct application to continuous-time models is rendered ineffective by their dense concrete state spaces and the need to consider continuous input for optimal decisions. In this paper we describe the challenges and state of the art in applying lightweight scheduler sampling to three continuous-time formalisms: After a review of recent work on exploiting discrete abstractions for probabilistic timed automata, we discuss scheduler sampling for Markov automata and apply it on two case studies. We provide further insights into the tradeoffs between scheduler classes for stochastic automata. Throughout, we present extended experiments and new visualisations of the distribution of schedulers.</p

    Using probabilistic automata for security protocols verification

    No full text
    The article discusses the issues of modeling and the analysis of executions, which is a substantial part of modern communication protocols - authentication protocols, which are generally referred to herein as security protocols. The article presents a way of security protocols executions analysis with the use of probabilistic automata, without well known and widely used perfect cryptography assumption (we assume allowing the possibility of breaking a key with a specified probability). This type of analysis leads to interesting observations about the operation of the protocol and its weaknesses

    A new mathematical model for analytical risk assessment and prediction in IT systems

    No full text
    In this paper, we propose a new formal model to describe risk analysis and measurement process for IT systems. Our model complies with international standards and recommendations for non-profit organisations. The model accounts for solutions used in widely known and recommended risk analysis methods and provides for evaluation of efficacy of these solutions. A simple example illustrates the application of the proposed model for effective risk analysis of any IT system
    corecore