2,145 research outputs found

    Inhomogeneous scalar field solutions and inflation

    Get PDF
    We present new exact cosmological inhomogeneous solutions for gravity coupled to a scalar field in a general framework specified by the parameter λ\lambda. The equations of motion (and consequently the solutions) in this framework correspond either to low-energy string theory or Weyl integrable spacetime according to the sign of λ\lambda. We show that different inflationary behaviours are possible, as suggested by the study of the violation of the strong energy condition. Finally, by the analysis of certain curvature scalars we found that some of the solutions may be nonsingular.Comment: LaTex file, 14 page

    On Bubble Growth and Droplet Decay in Cosmological Phase Transitions

    Get PDF
    We study spherically symmetric bubble growth and droplet decay in first order cosmological phase transitions, using a numerical code including both the complete hydrodynamics of the problem and a phenomenological model for the microscopic entropy producing mechanism at the phase transition surface. The small-scale effects of finite wall width and surface tension are thus consistently incorporated. We verify the existence of the different hydrodynamical growth modes proposed recently and investigate the problem of a decaying quark droplet in the QCD phase transition. We find that the decaying droplet leaves behind no rarefaction wave, so that any baryon number inhomogeneity generated previously should survive the decay.Comment: 10 pages (revtex), 10 figures as uuencoded postscrip

    Electroweak baryogenesis induced by a scalar field

    Get PDF
    A cosmological pseudoscalar field coupled to hypercharge topological number density can exponentially amplify hyperelectric and hypermagnetic fields while coherently rolling or oscillating, leading to the formation of a time-dependent condensate of topological number density. The topological condensate can be converted, under certain conditions, into baryons in sufficient quantity to explain the observed baryon asymmetry in the universe. The amplified hypermagnetic field can perhaps sufficiently strengthen the electroweak phase transition, and by doing so, save any pre-existing baryon number asymmetry from extinction.Comment: 8 pages, 4 figure

    Finite temperature effects on cosmological baryon diffusion and inhomogeneous Big-Bang nucleosynthesis

    Get PDF
    We have studied finite temperature corrections to the baryon transport cross sections and diffusion coefficients. These corrections are based upon the recently computed renormalized electron mass and the modified state density due to the background thermal bath in the early universe. It is found that the optimum nucleosynthesis yields computed using our diffusion coefficients shift to longer distance scales by a factor of about 3. We also find that the minimum value of 4He^4 He abundance decreases by ΔYp0.01\Delta Y_p \simeq 0.01 while DD and 7Li^7 Li increase. Effects of these results on constraints from primordial nucleosynthesis are discussed. In particular, we find that a large baryonic contribution to the closure density (\Omega_b h_{50}^{2} \lsim 0.4) may be allowed in inhomogeneous models corrected for finite temperature.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Determination of Omega_b From Big Bang Nucleosynthesis in the Presence of Regions of Antimatter

    Full text link
    Production of regions of antimatter in the early universe is predicted in many baryogenesis models. Small scale antimatter regions would annihilate during or soon after nucleosynthesis, affecting the abundances of the light elements. In this paper we study how the acceptable range in Omega_b changes in the presence of antimatter regions, as compared to the standard big bang nucleosynthesis. It turns out that it is possible to produce at the same time both a low 4He value (Y_p < 0.240) and a low D/H value (D/H < 4e-5), but overproduction of 7Li is unavoidable at large Omega_b.Comment: 9 pages, PRD version, ref. 6 correcte

    Planck intermediate results XXIII : Galactic plane emission components derived from Planck with ancillary data

    Get PDF
    Planck data when combined with ancillary data provide a unique opportunity to separate the diffuse emission components of the inner Galaxy. The purpose of the paper is to elucidate the morphology of the various emission components in the strong star-formation region lying inside the solar radius and to clarify the relationship between the various components. The region of the Galactic plane covered is 1 = 300 degrees -> 0 degrees -> 60 degrees where star-formation is highest and the emission is strong enough to make meaningful component separation. The latitude widths in this longitude range lie between 1 and 2, which correspond to FWHM z-widths of 100-200 pc at a typical distance of 6 kpc. The four emission components studied here are synchrotron, free-free, anomalous microwave emission (AME), and thermal (vibrational) dust emission. These components are identified by constructing spectral energy distributions (SEDs) at positions along the Galactic plane using the wide frequency coverage of Planck (28.4-857 GHz) in combination with low-frequency radio data at 0.408-2.3 GHz plus WMAP data at 23-94 GHz, along with far-infrared (FIR) data from COBE-DIRBE and IRAS. The free-free component is determined from radio recombination line (RRL) data. AME is found to be comparable in brightness to the free-free emission on the Galactic plane in the frequency range 20-40 GHz with a width in latitude similar to that of the thermal dust; it comprises 45 +/- 1% of the total 28.4 GHz emission in the longitude range 1 = 300 degrees -> 0 degrees -> 60 degrees. The free-free component is the narrowest, reflecting the fact that it is produced by current star-formation as traced by the narrow distribution of OB stars. It is the dominant emission on the plane between 60 and 100 GHz. RRLs from this ionized gas are used to assess its distance, leading to a free-free z-width of FWHM approximate to 100 pc. The narrow synchrotron component has a low-frequency brightness spectral index beta(synch) approximate to -2.7 that is similar to the broad synchrotron component indicating that they are both populated by the cosmic ray electrons of the same spectral index. The width of this narrow synchrotron component is significantly larger than that of the other three components, suggesting that it is generated in an assembly of older supernova remnants that have expanded to sizes of order 150 pc in 3 x 10(5) yr; pulsars of a similar age have a similar spread in latitude. The thermal dust is identified in the SEDs with average parameters of T-dust = 20.4 +/- 0.4 K, beta(FIR) = 1.94 +/- 0.03 (>353 GHz), and beta(mm) = 1.67 +/- 0.02 (Peer reviewe
    corecore