2,885 research outputs found
Automated Structure Discovery for Scanning Tunneling Microscopy
Scanning tunnelling microscopy (STM) with a functionalized tip apex reveals
the geometric and electronic structure of a sample within the same experiment.
However, the complex nature of the signal makes images difficult to interpret
and has so far limited most research to planar samples with a known chemical
composition. Here, we present automated structure discovery for STM (ASD-STM),
a machine learning tool for predicting the atomic structure directly from an
STM image, by building upon successful methods for structure discovery in
non-contact atomic force microscopy (nc-AFM). We apply the method on various
organic molecules and achieve good accuracy on structure predictions and
chemical identification on a qualitative level, while highlighting future
development requirements to ASD-STM. This method is directly applicable to
experimental STM images of organic molecules, making structure discovery
available for a wider SPM audience outside of nc-AFM. This work also opens
doors for more advanced machine learning methods to be developed for STM
discovery
Calculating the 3D magnetic field of ITER for European TBM studies
The magnetic perturbation due to the ferromagnetic test blanket modules
(TBMs) may deteriorate fast ion confinement in ITER. This effect must be
quantified by numerical studies in 3D. We have implemented a combined finite
element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate
the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry
simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to
26%. This has been compensated for by modifying the nonlinear ferromagnetic
material properties accordingly. Despite the simplifications, the computation
geometry and the calculated fields are highly detailed. The combination of
careful FEM mesh design and using BSLIM enables the use of the fields
unsmoothed for particle orbit-following simulations. The magnetic field was
found to agree with earlier calculations and revealed finer details. The vector
potential is intended to serve as input for plasma shielding calculations.Comment: In proceedings of the 28th Symposium on Fusion Technolog
"I feel it is mine!" - Psychological ownership in relation to natural resources
The use of natural resources often generates conflict among stakeholders. Conflict analysis and management in this sector has traditionally been based on compliance enforcement and/or education. Recently, however, the need for alternative approaches has been increasingly highlighted. In this study, we address the need for in-depth analysis, and introduce the theoretical concept of psychological ownership to improve the understanding and potential management of conflict situations. We suggest that ownership feelings may play a significant role both in successful co-operation, and in conflicts related to the use of natural resources. The study is qualitative in nature. The data consisted of two interview datasets related to nature tourism: nature tourism in private forests and bear watching safaris. We show that the ways the psychological ownership of stakeholder groups is constructed and taken into account in co-operative relationships are of the utmost importance for the sustainability and success of the interplay among stakeholders. (C) 2017 Elsevier Ltd. All rights reserved.Peer reviewe
Euclid : Forecast constraints on consistency tests of the Lambda CDM model
Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics. Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant Lambda and the cold dark matter (Lambda CDM) model in the redshift range 0 < z < 1.8. Methods. We considered both currently available data and simulated Euclid and external data products based on a Lambda CDM fiducial model, an evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaitre-Tolman-Bondi model with a cosmological constant Lambda, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions about any particular model. Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the Lambda CDM by approximately a factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also find that in certain cases, the parametric approach may be biased against or missing some features of models far from Lambda CDM Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current cosmological paradigm.Peer reviewe
Symmetry breaking in driven and strongly damped pendulum
We examine the conditions for appearance of symmetry breaking bifurcation in
damped and periodically driven pendulum in the case of strong damping. We show
that symmetry breaking, unlike other nonlinear phenomena, can exist at high
dissipation. We prove that symmetry breaking phases exist between phases of
symmetric normal and symmetric inverted oscillations. We find that symmetry
broken solutions occupy a sufficiently smaller region of pendulum's parameter
space in comparison to the statements made in earlier considerations [McDonald
and Plischke, Phys. Rev. B 27 (1983) 201]. Our research on symmetry breaking in
a strongly damped pendulum is relevant to an understanding of phenomena of
dynamic symmetry breaking and rectification in a pure ac driven semiconductor
superlattices.Comment: 11 pages, 4 color figures, RevTeX
Euclid : Constraining ensemble photometric redshift distributions with stacked spectroscopy
Context. The ESA Euclid mission will produce photometric galaxy samples over 15 000 square degrees of the sky that will be rich for clustering and weak lensing statistics. The accuracy of the cosmological constraints derived from these measurements will depend on the knowledge of the underlying redshift distributions based on photometric redshift calibrations. Aims. A new approach is proposed to use the stacked spectra from Euclid slitless spectroscopy to augment broad-band photometric information to constrain the redshift distribution with spectral energy distribution fitting. The high spectral resolution available in the stacked spectra complements the photometry and helps to break the colour-redshift degeneracy and constrain the redshift distribution of galaxy samples. Methods. We modelled the stacked spectra as a linear mixture of spectral templates. The mixture may be inverted to infer the underlying redshift distribution using constrained regression algorithms. We demonstrate the method on simulated Vera C. Rubin Observatory and Euclid mock survey data sets based on the Euclid Flagship mock galaxy catalogue. We assess the accuracy of the reconstruction by considering the inference of the baryon acoustic scale from angular two-point correlation function measurements. Results. We selected mock photometric galaxy samples at redshift z>1 using the self-organising map algorithm. Considering the idealised case without dust attenuation, we find that the redshift distributions of these samples can be recovered with 0.5% accuracy on the baryon acoustic scale. The estimates are not significantly degraded by the spectroscopic measurement noise due to the large sample size. However, the error degrades to 2% when the dust attenuation model is left free. We find that the colour degeneracies introduced by attenuation limit the accuracy considering the wavelength coverage of Euclid near-infrared spectroscopy.Peer reviewe
- …