1,417 research outputs found

    P-450; Structure, Function, and Regulation

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Reduction techniques of the back gate effect in the SOI Pixel Detector

    Get PDF
    We have fabricated monolithic pixel sensors in 0.2 μm Silicon-On-Insulator (SOI) CMOS technology, consisting of a thick sensor layer and a thin circuit layer with an insulating buried-oxide, which has many advantages. However, it has been found that the applied electric field in the sensor layer also affects the transistor operation in the adjacent circuit layer. This limits the applicable sensor bias well below the full depletion voltage. To overcome this, we performed a TCAD simulation and added an additional p-well (buried pwell) in the SOI process. Designs and preliminary results are presented

    Transport properties of the layered Rh oxide K_0.49RhO_2

    Full text link
    We report measurements and analyses of resistivity, thermopower and Hall coefficient of single-crystalline samples of the layered Rh oxide K_0.49RhO_2. The resistivity is proportional to the square of temperature up to 300 K, and the thermopower is proportional to temperature up to 140 K. The Hall coefficient increases linearly with temperature above 100 K, which is ascribed to the triangular network of Rh in this compound. The different transport properties between Na_xCoO_2 and K_0.49RhO_2 are discussed on the basis of the different band width between Co and Rh evaluated from the magnetotransport.Comment: 3 figures, submitted to PR

    Fundamental properties of Tsallis relative entropy

    Get PDF
    Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven

    The impact of molecular profile on the lymphatic spread pattern in stage III colon cancer

    Get PDF
    The anatomical spread of lymph node (LN) metastasis is of practical importance in the surgical management of colon cancer (CC). We examined the effect of KRAS, BRAF, and microsatellite instability (MSI) on LN count and anatomical spread pattern in stage III CC. We determined KRAS, BRAF, and MSI status from stage III CC patients. Biomarker status was correlated with LN count and anatomical spread pattern, which was classified as sequential or skipped. Relapse-free survival (RFS) was estimated using Kaplan-Meier method, and correlations were assessed using log-rank and Cox regression analyses. We analyzed 369 stage III CC patients. The proportion of KRAS mutant (mt), BRAF mt, and MSI-high (H) were 44.2% (163/344), 6.8% (25/344), and 6.8% (25/344), respectively. The mean number of metastatic LN was higher in microsatellite-stable (MSS) compared with MSI patients (3.5 vs. 2.7, P = .0406), although no differences were observed in accordance with KRAS or BRAF status. Interestingly, patients with BRAF mt and MSI-H were less likely to harbor skipped metastatic LN (9.3% vs 20% and 4% vs 10.5% compared with BRAF wild-type (wt) and MSS, respectively), but KRAS status did not predict anatomical spread pattern. Patients with KRAS wt and MSI-H showed superior RFS compared with KRAS mt and MSS patients, respectively, whereas BRAF status did not affect RFS. Differences exist in the anatomical pattern of invaded LN in accordance with the molecular status of stage III CC. Patients with MSI-H CC have less invaded and skipped LN, suggesting that a tailored surgical approach is possible

    Developmental Exposure to Low-Dose PBDE-99: Effects on Male Fertility and Neurobehavior in Rat Offspring

    Get PDF
    In utero exposure to a single low dose of 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE-99) disrupts neurobehavioral development and causes permanent effects on the rat male reproductive system apparent in adulthood. PBDEs, a class of flame retardants, are widely used in every sector of modern life to prevent fire. They are persistent in the environment, and increasing levels of PBDEs have been found in biota and human breast milk. In the present study we assessed the effects of developmental exposure to one of the most persistent PBDE congeners (PBDE-99) on juvenile basal motor activity levels and adult male reproductive health. Wistar rat dams were treated by gavage on gestation day 6 with a single low dose of 60 or 300 μg PBDE-99/kg body weight (bw). In offspring, basal locomotor activity was evaluated on postnatal days 36 and 71, and reproductive performance was assessed in males at adulthood. The exposure to low-dose PBDE-99 during development caused hyperactivity in the offspring at both time points and permanently impaired spermatogenesis by the means of reduced sperm and spermatid counts. The doses used in this study (60 and 300 μg/kg bw) are relevant to human exposure levels, being approximately 6 and 29 times, respectively, higher than the highest level reported in human breast adipose tissue. This is the lowest dose of PBDE reported to date to have an in vivo toxic effect in rodents and supports the premise that low-dose studies should be encouraged for hazard identification of persistent environmental pollutants
    corecore