34 research outputs found

    Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation

    Get PDF
    With growing gas and oil prices, electricity generation based on these fossil fuels is becoming increasingly expensive. Furthermore, the vision of natural gas as a transition fuel is subject to many constraints and uncertainties of economic, environmental, and geopolitical nature. Consequently, renewable energies such as solar and wind power are expected to reach new records of installed capacity over the upcoming years. Considering the above, North Africa is one of the regions with the largest renewable resource potential globally. While extensively studied in the literature, these resources remain underutilized. Thus, to contribute to their future successful deployment and integration with the power system, this study presents a spatial and temporal analysis of the nature of solar and wind resources over North Africa from the perspective of energy droughts. Both the frequency and maximal duration of energy droughts are addressed. Both aspects of renewables’ variable nature have been evaluated in the North Atlantic Oscillation (NAO) context. The analysis considers the period between 1960 and 2020 based on hourly reanalysis data (i.e., near-surface shortwave irradiation, wind speed, and air temperature) and the Hurrel NAO index. The findings show an in-phase relationship between solar power and winter NAO index, particularly over the coastal regions in western North Africa and opposite patterns in its eastern part. For wind energy, the connection with NAO has a more zonal pattern, with negative correlations in the north and positive correlations in the south. Solar energy droughts dominate northern Tunisia, Algeria, and Morocco, while wind energy droughts mainly occur in the Atlas Mountains range. On average, solar energy droughts tend not to exceed 2–3 consecutive days, with the longest extending for five days. Wind energy droughts can be as prolonged as 80 days (Atlas Mountains). Hybridizing solar and wind energy reduces the potential for energy droughts significantly. At the same time, the correlation between their occurrence and the NAO index remains low. These findings show the potential for substantial resilience to inter-annual climate variability, which could benefit the future stability of renewables-dominated power systems.Graphical abstrac

    Characterizing the 2014 Indus River flooding using hydraulic simulations and satellite images

    Get PDF
    Rivers play an essential role to humans and ecosystems, but they also burst their banks during floods, often causing extensive damage to crops, property, and loss of lives. This paper characterizes the 2014 flood of the Indus River in Pakistan using the US Army Corps of Engineers Hydrologic Engineering Centre River Analysis System (HEC-RAS) model, integrated into a Geographic Information System (GIS), and satellite images from Landsat-8. The model is used to estimate the spatial extent of the flood and assess the damage that it caused by examining changes to the different Land Use/Land Cover (LULC) types of the river basin. Extreme flows for different return periods were esti-mated using a flood frequency analysis using a log-Pearson III distribution, which the Kolmogorov-Smirnov (KS) test identified as the best distribution to characterize the flow regime of the Indus river at Taunsa Barrage. The output of the flood frequency analysis was then incorporated into the HEC-RAS model to determine the spatial extent of the 2014 flood, with the accuracy of this modelling approach assessed using images from the Moderate Resolution Imaging Spectroradiometer (MODIS). The results reveal good agreement between simulated and obtained flood from the MODIS images, with an overall classification accuracy of more than 85%. The results also revealed that the most affected LULC in the watershed was crop/agricultural land, of which 50% was affected by the flood. This paper provides further evidence of the benefit of using a hydrological model and satellite images for flood monitoring and for flood damage assessment to inform the development of risk mitigation strategies

    The superiority of data-driven techniques for estimation of daily pan evaporation

    No full text
    In the present study, estimating pan evaporation (Epan) was evaluated based on different input parameters: maximum and minimum temperatures, relative humidity, wind speed, and bright sunshine hours. The techniques used for estimating Epan were the artificial neural network (ANN), wavelet-based ANN (WANN), radial function-based support vector machine (SVM-RF), linear function-based SVM (SVM-LF), and multi-linear regression (MLR) models. The proposed models were trained and tested in three different scenarios (Scenario 1, Scenario 2, and Scenario 3) utilizing different percentages of data points. Scenario 1 includes 60%: 40%, Scenario 2 includes 70%: 30%, and Scenario 3 includes 80%: 20% accounting for the training and testing dataset, respectively. The various statistical tools such as Pearson’s correlation coefficient (PCC), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), and Willmott Index (WI) were used to evaluate the performance of the models. The graphical representation, such as a line diagram, scatter plot, and the Taylor diagram, were also used to evaluate the proposed model’s performance. The model results showed that the SVM-RF model’s performance is superior to other proposed models in all three scenarios. The most accurate values of PCC, RMSE, NSE, and WI were found to be 0.607, 1.349, 0.183, and 0.749, respectively, for the SVM-RF model during Scenario 1 (60%: 40% training: testing) among all scenarios. This showed that with an increase in the sample set for training, the testing data would show a less accurate modeled result. Thus, the evolved models produce comparatively better outcomes and foster decision-making for water managers and planners.Validerad;2021;Nivå 2;2021-06-29 (beamah)</p
    corecore