79 research outputs found

    Species-independent bioassay for sensitive quantification of antiviral type I interferons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the host response to infection often require quantitative measurement of the antiviral type I interferons (IFN-α/β) in biological samples. The amount of IFN is either determined via its ability to suppress a sensitive indicator virus, by an IFN-responding reporter cell line, or by ELISA. These assays however are either time-consuming and lack convenient readouts, or they are rather insensitive and restricted to IFN from a particular host species.</p> <p>Results</p> <p>An IFN-sensitive, <it>Renilla </it>luciferase-expressing Rift Valley fever virus (RVFV-Ren) was generated using reverse genetics. Human, murine and avian cells were tested for their susceptibility to RVFV-Ren after treatment with species-specific IFNs. RVFV-Ren was able to infect cells of all three species, and IFN-mediated inhibition of viral reporter activity occurred in a dose-dependent manner. The sensitivity limit was found to be 1 U/ml IFN, and comparison with a standard curve allowed to determine the activity of an unknown sample.</p> <p>Conclusions</p> <p>RVFV-Ren replicates in cells of several species and is highly sensitive to pre-treatment with IFN. These properties allowed the development of a rapid, sensitive, and species-independent antiviral assay with a convenient luciferase-based readout.</p

    Coronavirus Non-Structural Protein 1 Is a Major Pathogenicity Factor: Implications for the Rational Design of Coronavirus Vaccines

    Get PDF
    Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1). In cell culture, nsp1 of mouse hepatitis virus (MHV), like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN) receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines

    The SARS-coronavirus-host interactome

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock

    The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock

    3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes

    Get PDF
    Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro

    Methodologies used to estimate tobacco-attributable mortality: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most important measures for ascertaining the impact of tobacco on a population is the estimation of the mortality attributable to its use. To measure this, a number of indirect methods of quantification are available, yet there is no consensus as to which furnishes the best information. This study sought to provide a critical overview of the different methods of attribution of mortality due to tobacco consumption.</p> <p>Method</p> <p>A search was made in the Medline database until March 2005 in order to obtain papers that addressed the methodology employed for attributing mortality to tobacco use.</p> <p>Results</p> <p>Of the total of 7 methods obtained, the most widely used were the prevalence methods, followed by the approach proposed by Peto et al, with the remainder being used in a minority of studies.</p> <p>Conclusion</p> <p>Different methodologies are used to estimate tobacco attributable mortality, but their methodological foundations are quite similar in all. Mainly, they are based on the calculation of proportional attributable fractions. All methods show limitations of one type or another, sometimes common to all methods and sometimes specific.</p

    Digitalisierung beruflicher Lern- und Arbeitsprozesse. Impulse aus der Bauwirtschaft und anderen gewerblich-technischen Sektoren

    Get PDF
    Der Sammelband stellt aktuelle Ansätze zum digital unterstützten beruflichen Lernen dar. Die Beiträge geben Einblicke in die dynamische Entwicklung der Schnittstellen von Erwerbsarbeit und beruflicher Aus-, Fort- und Weiterbildung im Kontext der Digitalisierung Arbeits- und Lernmitteln. Der Band schließt damit an die 2019 ebenfalls im Universitätsverlag der Technischen Universität Berlin erschienene Publikation „Berufsbildung am Bau digital“ (hrsg. von Bernd Mahrin und Johannes Meyser) an. Das erste Kapitel erörtert grundsätzliche didaktische Fragen zu digital unterstütztem Lernen und Arbeiten einschließlich der Rahmenbedingungen. Im zweiten Kapitel schließen sich Beiträge zur Kapazitätsentwicklung, zu Standards und zu digitalen Werkzeugen an. Das dritte Kapitel widmet sich konkreten Einzellösungen mit starkem Praxisbezug und hohem Transferpotenzial zum digitalisierten Arbeiten und Lernen im Bausektor und im Metallbereich. Das abschließende vierte Kapitel präsentiert übergreifend nutzbare und frei zugängliche Online-Angebote wie einen Medienpool für Bildungszwecke, eine Lernmedien-Datenbank und ein hybrides Lernsystem mit virtuellem 3D-Gebäudemodell. Das Buch ist entstanden im Rahmen des durch das Bundesministerium für Bildung und Forschung und den Europäischen Sozialfonds geförderten Projektes DigiBAU – Digitales Bauberufliches Lernen und Arbeiten. (DIPF/Orig.)The anthology presents current approaches to digitally supported professional learning. The articles provide insights into the dynamic development of the interfaces between gainful employment and vocational training and further education in the context of digitization of work and learning aids. The volume is thus connected to the publication “Berufsbildung am Bau digital” (edited by Bernd Mahrin and Johannes Meyser), which was published in 2019 by the University Press of the Technische Universität Berlin. The first chapter discusses fundamental didactic questions about digitally supported learning and working, including the framework conditions. The second chapter picks contributions on capacity development, standards, and digital tools out as central themes. The third chapter is dedicated to concrete specific solutions with strong practical relevance and high transfer potential for digitized work and learning in the construction sector and in the metal sector. The final fourth chapter presents comprehensive and freely accessible online offers such as a media pool for educational purposes, a learning media database and a hybrid learning system with a virtual 3D building model. The book was created as part of the DigiBAU project - digital vocational learning and working in the field of construction - funded by the German Federal Ministry of Education and Research and the European Social Fund. (DIPF/Orig.

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship
    corecore