125 research outputs found
Glycine cleavage system in neurogenic regions
The glycine cleavage system (GCS) is the essential enzyme complex for
degrading glycine and supplying 5,10-methylenetetrahydrofolate for DNA
synthesis. Inherited deficiency of this system causes non-ketotic
hyperglycinemia, characterized by severe neurological symptoms and
frequent association of brain malformations. Although high levels of
glycine have been considered to cause the above-mentioned problems, the
detailed pathogenesis of this disease is still unknown. Here we show that
GCS is abundantly expressed in rat embryonic neural stem/progenitor
cells in the neuroepithelium, and this expression is transmitted to the
radial glia-astrocyte lineage, with prominence in postnatal neurogenic
regions. These data indicate that GCS plays important roles in
neurogenesis, and suggest that disturbance of neurogenesis induced by
deficiency of GCS may be the main pathogenesis of non-ketotic
hyperglycinemi
Postpartum Deterioration of Hemodynamics in a Case of Uncorrected Ebstein's Anomaly
Ebstein's anomaly is a rare congenital cardiac malformation that is characterized by abnormalities of the tricuspid valve and right ventricle. Pregnancy is usually well tolerated unless cyanosis or arrhythmia develops. We report a case with Ebstein's anomaly, whose condition was asymptomatic before pregnancy but remarkably deteriorated down during the postpartum period, even though a successful pregnancy and cardiac surgery were achieved. Women with Ebstein's anomaly should be carefully assessed and may need to be advised to have corrective surgery prior to pregnancy even if they were asymptomatic
Development of icterus gravis in a preterm infant with G71R UGT1A1 polymorphism
BACKGROUND: Uridine diphosphate-glucuronosyltransferase (UGT) gene family is involved in the detoxification of biomaterials and drugs in the liver. Among the UGT gene family members, only UGT1A1 is involved in bilirubin conjugation. As a result, deficient UGT1A1 activity causes jaundice. One disease that is characterized by reduced UGT1A1 activity is Gilbert’s syndrome. Two prevalent UGT1A1 polymorphisms responsible for Gilbert’s syndrome have been identified: G71R in exon 1 and A(TA)7TAA in the TATA box of the promoter region. Recently, the G71R polymorphism has been associated with breastfeeding jaundice and neonatal hyperbilirubinemia in term infants. However, its association with jaundice in very low birth weight infants (VLBWIs) has never been reported. CASE PRESENTATION: The patient was a female born at 28 weeks, 4 days gestation with a birth weight of 1172 g. On day 21, intense yellowing of the skin and eyes was noted, and the patient’s total bilirubin level was 23.7 mg/dL (her direct bilirubin level was 2.1 mg/dL). Therefore, an exchange transfusion was conducted. She had neither blood type incompatibility nor a family history of constitutional jaundice. Metabolic screens for amino and organic acids were negative. No elevation of any of the examined antibody titers was noted, and no evidence of an inflammatory reaction was observed. In addition, no hematological abnormalities were detected. The direct/indirect Coombs test, irregular antibody test and red blood cell antibody dissociation test were all negative, and her thyroid function was normal. We performed sequence analysis of the UGT1A1 gene after the patient’s parents provided written informed consent. Exon 1 of the UGT1 gene on chromosome 2 was analyzed by direct sequencing. A heterozygous substitution from G to A (211G→A: G71R) in base 211 was noted. CONCLUSION: We speculated that this preterm infant with carrying the G71R polymorphism reduced UGT1A1 activity and developed severe jaundice that was likely triggered by factors such as breast feeding and medications. The polymorphism appears at some frequency among VLBWIs, which would necessitate adequate care of severe jaundice even after the acute phase
Attachment Disorder and Early Media Exposure
Many studies have reported many adverse effects of children’s use of media. These effects include reduced cognitive development and hyperactivity and attention disorders. Although it has been recommended that child be kept away from the media during the early developmental period, many modern parents use the media as a way to calm their children. Consequently, these children lack the opportunity to form selective attachments by reduced social engagement. These children’s symptoms occasionally mimic autism spectrum disorder (ASD). However, few studies have examined the symptoms children develop with early media exposure. Here, we present a boy exposed to the media during his early development who was diagnosed with attachment disorder. He was unable to make eye contact and was hyperactive and had delayed language development, like children with ASD. His symptoms improved dramatically after he was prevented from using all media and encouraged to play in other ways. After this treatment, he would make eye contact, and talked about playing with their parents. Simply avoiding the media and playing with others can change the behavior of a child with ASD-like symptoms. It is important to understand the symptoms caused by attachment disorder and early media exposure
Using spin to understand the formation of LIGO's black holes
With the detection of four candidate binary black hole (BBH) mergers by the
Advanced LIGO detectors thus far, it is becoming possible to constrain the
properties of the BBH merger population in order to better understand the
formation of these systems. Black hole (BH) spin orientations are one of the
cleanest discriminators of formation history, with BHs in dynamically formed
binaries in dense stellar environments expected to have spins distributed
isotropically, in contrast to isolated populations where stellar evolution is
expected to induce BH spins preferentially aligned with the orbital angular
momentum. In this work we propose a simple, model-agnostic approach to
characterizing the spin properties of LIGO's BBH population. Using measurements
of the effective spin of the binaries, which is LIGO's best constrained spin
parameter, we introduce a simple parameter to quantify the fraction of the
population that is isotropically distributed, regardless of the spin magnitude
distribution of the population. Once the orientation characteristics of the
population have been determined, we show how measurements of effective spin can
be used to directly constrain the underlying BH spin magnitude distribution.
Although we find that the majority of the current effective spin measurements
are too small to be informative, with LIGO's four BBH candidates we find a
slight preference for an underlying population with aligned spins over one with
isotropic spins (with an odds ratio of 1.1). We argue that it will be possible
to distinguish symmetric and anti-symmetric populations at high confidence with
tens of additional detections, although mixed populations may take
significantly more detections to disentangle. We also derive preliminary spin
magnitude distributions for LIGO's black holes, under the assumption of aligned
or isotropic populations
Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation
CDC42-C末端異常症に於ける炎症病態を解明 --ゴルジ体への異常蓄積がパイリンインフラマソーム形成を過剰促進--. 京都大学プレスリリース. 2022-05-02.Mutations in the C-terminal region of the CDC42 gene cause severe neonatal-onset autoinflammation. Effectiveness of IL-1β–blocking therapy indicates that the pathology involves abnormal inflammasome activation; however, the mechanism underlying autoinflammation remains to be elucidated. Using induced-pluripotent stem cells established from patients carrying CDC42[R186C], we found that patient-derived cells secreted larger amounts of IL-1β in response to pyrin-activating stimuli. Aberrant palmitoylation and localization of CDC42[R186C] protein to the Golgi apparatus promoted pyrin inflammasome assembly downstream of pyrin dephosphorylation. Aberrant subcellular localization was the common pathological feature shared by CDC42 C-terminal variants with inflammatory phenotypes, including CDC42[*192C*24] that also localizes to the Golgi apparatus. Furthermore, the level of pyrin inflammasome overactivation paralleled that of mutant protein accumulation in the Golgi apparatus, but not that of the mutant GTPase activity. These results reveal an unexpected association between CDC42 subcellular localization and pyrin inflammasome activation that could pave the way for elucidating the mechanism of pyrin inflammasome formation
Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases
Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model “Mitomouse” (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial
Development of a Multi-Step Leukemogenesis Model of MLL-Rearranged Leukemia Using Humanized Mice
Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ−/− (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia
- …