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Takuma Usuzaki1, Hisashi Ohseto1, Atsushi Hozawa1,2, Masahiro Kikuya1,2,5, Hirohito Metoki1,2,6, Shigeo Kure1,2,4 and
Shinichi Kuriyama 1,2,7

Abstract
Autism spectrum disorder (ASD) has phenotypically and genetically heterogeneous characteristics. A simulation study
demonstrated that attempts to categorize patients with a complex disease into more homogeneous subgroups could
have more power to elucidate hidden heritability. We conducted cluster analyses using the k-means algorithm with a
cluster number of 15 based on phenotypic variables from the Simons Simplex Collection (SSC). As a preliminary study,
we conducted a conventional genome-wide association study (GWAS) with a data set of 597 ASD cases and 370
controls. In the second step, we divided cases based on the clustering results and conducted GWAS in each of the
subgroups vs controls (cluster-based GWAS). We also conducted cluster-based GWAS on another SSC data set of 712
probands and 354 controls in the replication stage. In the preliminary study, which was conducted in conventional
GWAS design, we observed no significant associations. In the second step of cluster-based GWASs, we identified 65
chromosomal loci, which included 30 intragenic loci located in 21 genes and 35 intergenic loci that satisfied the
threshold of P < 5.0 × 10−8. Some of these loci were located within or near previously reported candidate genes for
ASD: CDH5, CNTN5, CNTNAP5, DNAH17, DPP10, DSCAM, FOXK1, GABBR2, GRIN2A5, ITPR1, NTM, SDK1, SNCA, and SRRM4. Of
these 65 significant chromosomal loci, rs11064685 located within the SRRM4 gene had a significantly different
distribution in the cases vs controls in the replication cohort. These findings suggest that clustering may successfully
identify subgroups with relatively homogeneous disease etiologies. Further cluster validation and replication studies
are warranted in larger cohorts.

Introduction
Autism spectrum disorder (ASD) has heterogeneous

characteristics in terms of both phenotypic features and
genetics. ASD is mainly characterized by difficulties in
communication and repetitive behaviors, but ASD also
shows many other symptoms1. Regarding genetics, pre-
vious studies have not consistently identified genetic
variants that are associated with an increased risk of

ASD2, although several lines of evidence suggest that
genetic factors strongly contribute to the increased risk of
ASD. Monozygotic twins have higher concordance
rates of ASD (92%) than dizygotic twins (10%)3. The
recurrence risk ratio is 22 for ASD among siblings4. The
Human Gene module of the Simons Foundation Autism
Research Initiative (SFARI) gene provides a comprehen-
sive reference for suggested human ASD-related genes in
an up-to-date manner5 and currently demonstrates ~1000
genes that may have links to ASD, potentially indicating the
heterogeneity of ASD. In addition to phenotype and gen-
otype heterogeneities, ASD shows heterogeneous responses
to interventions. Several kinds of pharmacological
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treatments are suggested, but the effects of these treat-
ments are controversial6.
If the heterogeneous phenotypes and responses to

treatment in some way correspond to differences in
genotype, grouping persons with ASD according to phe-
notype and responses to treatment variables may increase
the chances of identifying genetic susceptibility factors.
Traylor and colleagues7 demonstrated that attempts to
categorize patients with a complex disease into more
homogeneous subgroups could have more power to elu-
cidate the hidden heritability in a simulation study. Sev-
eral studies on Alzheimer’s disease, neuroticism, or
asthma indicated that items or symptoms were to some
degree more useful for identifying high-impact genetic
factors than broadly defined diagnoses8–10, although a
study of ASD demonstrated modest effects of two-way
stratification by individual symptoms11. In addition,
medical researchers have begun to use machine learning
methods, which is an artificial intelligence technique that
can reveal masked patterns of data sets. In view of the
abovementioned circumstances, clustering algorithms of
machine learning and subsequent genome-wide associa-
tion studies (GWASs) could be hypothesized to reveal
novel and more genetically homogeneous clusters, but a
combinatorial approach of cluster analysis and GWASs,
to the best of our knowledge, has not been applied to any
diseases including ASD.
We therefore explored whether grouping persons with

ASD using a clustering algorithm with phenotype and
responses to treatment variables can be used to discriminate
more genetically homogeneous persons with ASD. In the
present study, we conducted cluster-based GWASs (named
cluster-based GWASs) using real data based on the concept
of a previous simulation study7 adopting a machine learning
k-means12 algorithm for cluster analysis.

Subjects and methods
We conducted the present study in accordance with the

guidelines of the Declaration of Helsinki13 and all other
applicable guidelines. The protocol was reviewed and
approved by the institutional review board of Tohoku
University Graduate School of Medicine, and written
informed consent was obtained from all participants over
the age of 18 by the SFARI14. For participants under the age
of 18, informed consent was obtained from a parent and/or
legal guardian. In addition, for participants 10–17 years of
age, informed assent was obtained from the individuals.

data sets
We used phenotypic variables, history of treatment, and

genotypic data from the Simons Simplex Collection
(SSC)14. The SSC establishes a repository of phenotypic
data and genetic data/samples from mainly simplex
families.

The SSC data were publicly released in October 2007
and are directly available from the SFARI. From the SSC
data set, we used data from 614 affected white male
probands who had no missing information regarding
Autism Diagnostic Interview-Revised (ADI-R) scores15

and vitamin treatment16,17 and 391 unaffected brothers
for whom genotype data, generated by the Illumina
Human Omni2.5 (Omni2.5) array, were available for
subsequent clustering and genetic analyses. We excluded
participants whose ancestries were estimated to be dif-
ferent from the other participants using principal com-
ponent analyses (PCAs) performed by EIGENSOFT
version 7.2.118 for the genotype data. Based on the PCAs,
we excluded data beyond four standard deviations of
principal components 1 or 2 (Supplementary Fig. 1).
Therefore, we used data from 597 probands and 370
unaffected brothers.
In the replication study, we used another SSC data set

genotyped using the Illumina 1Mv3 (1Mv3) array. In the
data set, data from 735 affected male probands with no
missing information regarding ADI-R scores or vitamin
treatment and 387 unaffected brothers were available.
After conducting PCA, we excluded data beyond four
standard deviations of principal components 1 or 2 as
outliers. In this way, we used data from 712 probands and
354 unaffected brothers in the replication study.

Clustering
We conducted cluster analyses using phenotypic vari-

ables of ADI-R scores and history of vitamin treat-
ment16,17. We chose these variables because the ADI-R is
one of the most reliable estimates of ASD and has the
ability to evaluate substructure domains of ASD15. Among
the ADI-R scores, “the total score for the Verbal Com-
munication Domain of the ADI-R minus the total score
for the Nonverbal Communication Domain of the ADI-
R”, “the total score for the Nonverbal Communication
Domain of the ADI-R”, “the total score for the Restricted,
Repetitive, and Stereotyped Patterns of Behavior Domain
of the ADI-R”, and “the total score for the Reciprocal
Social Interaction Domain of the ADI-R” were included in
the preprocessed data set.
Among the treatments, we selected the variable of his-

tory of vitamin treatment because we recently found that
a cluster of persons with ASD is associated with potential
responsiveness to vitamin B6 treatment16,17. The history
of treatment is not always compatible with responsive-
ness, but we considered that continuous treatment indi-
cates responsiveness to some degree. The SSC data set
includes history of treatment but not variables of
responsiveness.
We applied the machine learning k-means12 algorithm

to conduct a cluster analysis to divide the data set
obtained from ASD persons into subgroups using
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phenotypic variables and history of treatment. The
k-means algorithm requires a cluster number (k) deter-
mined by researchers. We set a priori k of 5, 10, 15, and 20
under the hypothesis that ASD consists of hundreds of
subgroups5,14 and considering statistical power by sample
size calculations19. We performed the analyses using the
scikit-learn toolkit in Python 2.7 (Supplementary Infor-
mation 1).
Clustering is an exploratory data analysis technique, and

the validity of the clustering results may be judged by
external knowledge, such as the purpose of the segmen-
tation20. Several methods have proposed to prespecify a
cluster number of k, such as visual examination of the
data, and likelihood and error-based approaches; however,
these methods do not necessarily provide results that are
consistent with each other21. Although there are measures
for evaluating the quality of the clusters22, the number of
clusters should still be determined according to the
research purposes. We regarded the inflation factor (λ) of
quantile-quantile (Q–Q) plots of the logarithm of the P
value to base 10 (−log10P) as one of the indicators of
successful clustering in the present study. We calculated λ
for each cluster number.
When conducting clustering, we combined the two data

sets of male probands, one genotyped using the Omni2.5
array and the other genotyped using the 1Mv3 array. After
clustering, we redivided the new data set according to
the SNP arrays used. In the discovery stage, we used
the Omni2.5 data set and the 1Mv3 data set in the
replication stage.

Genotype data and quality control
We used the SSC data set, in which probands and

unaffected brothers had already been genotyped in other
previous studies14,23. In the discovery stage, we used the
data set genotyped by the Omni2.5 array, which has
2,383,385 probes. We excluded SNPs with a minor allele
frequency < 0.01, call rate < 0.95, and Hardy–Weinberg
equilibrium test P < 0.000001.
In the replication study, where we used the data set

genotyped using the 1Mv3 array, we applied the same
cutoff values for quality control as those used in the dis-
covery stage. The 1Mv3 array includes 1,147,689 SNPs.
The Omni2.5 array and the 1Mv3 array shared
675,923 SNPs.

Statistical analysis
As a preliminary study, we conducted a conventional

GWAS in the whole Omni2.5 data set, with a total of 597
male probands and 370 unaffected brothers. Here, we used
the brothers of the cases as controls, in contrast to many
previous studies in which genetically unrelated controls
were used. We thus adopted the sib transmission dis-
equilibrium test (sib-TDT)24, a family-based association

test, to take into account familial relationships among the
participants. In the second step, in the discovery stage, we
conducted cluster-based GWAS in each subgroup of the
cases, which had been divided using the k-means12 algo-
rithm, and the controls. As mentioned above, the controls
were the brothers of the cases, and we then excluded the
unaffected brothers of the cases belonging to the subgroup
being analyzed. Details of the study design are shown in
Supplementary Fig. 2. We applied the Cochran–Armitage
trend test25, which examines the risk of disease in those
who do not have the allele of interest, those who have a
single copy, and those who are homozygous.
We further tested the significantly associated loci found

in the discovery studies in the replication stage. The level
of significance for association was set as P < 0.05 in the
replication studies.
Association analyses were performed with the PLINK

software package26. The detected SNPs were subsequently
annotated using ANNOVAR27. Manhattan plots and
Q–Q plots were generated using the ‘qqman’ package in R
version 3.0.2.

Results
Cluster-based GWAS
As a preliminary study, we conducted a conventional

GWAS with the Omni2.5 data set using the sib-TDT.
We observed no significant associations (Fig. 1). Although
we adopted the sib-TDT here because we used the
brothers of the cases as controls, we also used the
Cochran–Armitage trend test and found that the −log10P
values were distributed downward compared with the
expected values, as shown in Supplementary Fig. 3.
We also applied the sib-TDT to cluster 1, which was

obtained by dividing all the cases using k-means with k of
15, and all the controls and found that the observed −logP
values were lower than expected, as shown in Supplemen-
tary Fig. 3. As the sib-TDT may efficiently work in a
population consisting of a substantial number of sibs, a
limited number of brothers of the probands among all the
controls probably contributed to a substantial loss of power.
Thus, we excluded the brothers of the probands in each
subset from the controls so that each subset of probands
has no genetic relations with the rest of the controls and
conducted the Cochran–Armitage trend test, as in many
other studies. In the present study, therefore, we applied the
sib-TDT to the GWAS of the whole data set, whereas in the
cluster-based GWAS, we excluded in turn the unaffected
brothers of the cases belonging to the subgroup being
analyzed and used the Cochran–Armitage trend test to
account for the relationships between participants.
The average inflation factor λ for the cluster-based

GWAS with k of 5, 10, 15, and 20 were 1.021, 1.024, 1.038,
and 1.053, respectively. Several lines of evidence suggest
that regarding an appropriate threshold of λ, empirically, a
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597 cases

370 controls

a

597 cases

370 controls

b

Fig. 1 Manhattan plot and corresponding quantile-quantile plot in GWAS for all male probands vs their unaffected brothers. Manhattan
plot a and corresponding quantile-quantile plot b in GWAS for all male probands vs their unaffected brothers. We conducted a GWAS in the Simons
Simplex Collection data set of 597 male probands and 370 unaffected brothers genotyped by the Illumina Human Omni2.5 array using the sib
transmission/disequilibrium test (sib-TDT). We observed no significant associations in this GWAS with the genome-wide threshold of P= 5.0 × 10−8.
The blue horizontal line indicates the genome-wide suggestive threshold of p= 1.0 × 10−5.
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value <1.050 is deemed safe for avoiding false positives28.
Under the hypothesis that ASD consists of hundreds of
subgroups14, we compared λ values giving larger numbers
of clusters as priority. We therefore considered the
cluster-based GWAS using k-means cluster analysis with
k of 15 to be the most appropriate approach to the present
data set. The characteristics of each cluster are presented
in Table 1.

Gene interpretation
We observed 65 chromosomal loci that satisfied the

threshold of P < 5.0 × 10−8 (Fig. 2); 30 out of the 65 loci
were located within 21 genes, and the remaining 35 loci
were intergenic (Table 2). Among them, eight loci were
located within or near the genes associated with the
Human Gene module of the SFARI Gene scoring system5;
GABBR2 (score 4, Rare Single Gene Mutation, Syndromic,
Functional) in Cluster 1; CNTNAP5 (score 4, Rare Single
Gene Mutation, Genetic Association) in Cluster 3; ITPR1
(score 4, Rare Single Gene Mutation) in Cluster 5;
DNAH17 (score 4, Rare Single Gene Mutation) in Cluster
7; SDK1 (score none, Rare Single Gene Mutation, Genetic
Association) in Cluster 13; SRRM4 (score 5, Rare Single
Gene Mutation, Functional) in Cluster 13; CNTN5 (score
3, Rare Single Gene Mutation, Genetic Association) in
Cluster 14; and DPP10 (score 3, Rare Single Gene
Mutation) in Cluster 15.
The SFARI Gene scoring system ranges from “Category

1”, which indicates “high confidence”, through “Category
6”, which denotes “evidence does not support a role”.
Genes of a syndromic disorder (e.g., fragile X syndrome)
related to ASD are categorized in a different category.
Rare single-gene variants, disruptions/mutations, and
submicroscopic deletions/duplications related to ASD are
categorized as “Rare Single Gene Mutation”.
In addition to genes in the Human Gene module of the

SFARI Gene, several important genes associated with ASD
or other related disorders29 from previous reports were
included in our findings as follows: CDH5 in Cluster 14,
DSCAM in Cluster 8, FOXK1 in Cluster 13, GRIN2A in
Cluster 5, NTM in Cluster 8, and SNCA in Cluster 11
previously reported with ASD30–35; PLCH2 in Cluster 11
previously reported with mental retardation36; ARHGAP18
in Cluster 18, CDC42BPA in Cluster 3, CXCL12 in Cluster
8, and HS3ST2 in Cluster 5 previously reported with schi-
zophrenia37–40; KCTD12 in Cluster 9 and PSAT1 in Cluster
8 previously reported with depressive disorder41,42; and
ADAMTS1 in Cluster 10, DOCK2 in Cluster 10, HS3ST2 in
Cluster 5, NAMPT in Cluster 5, and NAV in Cluster 5
previously reported with Alzheimer’s disease43–47.

Replication study
We conducted replication studies with another inde-

pendent data set that included a total of 712 maleTa
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Fig. 2 Manhattan plots and corresponding quantile-quantile plots in cluster-based GWASs. Manhattan plots a and corresponding quantile-
quantile plots b in cluster-based GWASs with a cluster number of 15. We performed cluster analysis using k-means with a cluster number of 15 and
conducted cluster-based GWAS. Among 15 clusters, significant associations were observed in 14 clusters. In total, we observed 65 chromosomal loci,
labeled in the figure, that satisfied the threshold of P= 5.0 × 10−8. The red horizontal lines indicate the threshold for genome-wide significance (P= 5.0 ×
10−8) and the blue horizontal lines indicate the genome-wide suggestive threshold (P= 1.0 × 10−5). The names of the suggested genes where the
excerpted and circled SNPs are located are typed in Manhattan plots.
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probands and 354 unaffected brothers and had been
genotyped using the 1Mv3 array. As mentioned before, we
had previously carried out cluster analyses in the com-
bined data set genotyped with either Omni2.5 or 1Mv3
and then redivided it according to the SNP arrays used.
The characteristics of each of the 15 clusters in the 1Mv3
data set are presented in Supplementary Table 1.
Among the 65 genome-wide significant chromosomal

loci found in the discovery study, seven chromosomal loci
were included in the 1Mv3 array. Of these loci,
rs11064685, within SRRM4 in Cluster 13, had a sig-
nificantly different distribution (p= 0.03) in cases vs
controls in the replication cohort (Table 3).

Discussion
One of the most important findings of our study was

that reasonably decreasing the sample size could increase
the statistical power. A plausible explanation is that our
clustering may have successfully identified subgroups that
are etiologically more homogeneous. At least two reasons
could reduce the possibility of false positives of the pre-
sent results of statistically significant SNPs in cluster-
based GWAS. First, the present study validated the use-
fulness and feasibility of the concept of a previous simu-
lation study7, which indicated that homogeneous case
subgroups increase power in genetic association studies
by Traylor and colleagues, using measurement data in the
real world. Second, a substantial number of statistically
significant SNPs in cluster-based GWAS observed in the
present study were located within or near previously
reported candidate genes for ASD5,30–35.
We observed many statistically significant SNPs in

cluster-based GWAS: CDH5, CNTN5, CNTNAP5,
DNAH17, DPP10, DSCAM, FOXK1, GABBR2, GRIN2A5,
ITPR1, NTM, SDK1, SNCA, and SRRM4. In particular,
loci within the SRRM4 gene had significantly different
distributions in the cases vs controls in the replication
cohort. Previous studies indicate that SRRM4 is strongly
associated with ASD, indicating that our results may be
valid to some degree. The gene regulates neural micro-
exons. In the brains of individuals with ASD, these
microexons are frequently dysregulated48. In addition,
nSR100/SRRM4 haploinsufficiency in mice induced
autistic features such as sensory hypersensitivity and
altered social behavior and impaired synaptic transmis-
sion and excitability49.
In addition to SRRM4, we observed several genes loca-

ted within or near previously reported candidate genes for
ASD. The relatively high correspondence between our
results in part and the SFARI Gene scoring system5

indicates that the statistically significant loci we found
may be associated with ASD subgroups (Fig. 2). We also
observed several important genes associated with ASD
and other related disorders29 from previous reports.Ta
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These findings suggest that the statistically significant
SNPs might explain autistic symptoms because these
diseases are suggested to have shared etiology, even in
part, with ASD29. Associations at the remaining sig-
nificant loci that were not in the SFARI module or
described above have not been previously reported, and to
the best of our knowledge, some of them might be novel
findings. These results might suggest that novel genetic
loci of ASD could be found by identifying better defined
subgroups, although further confirmation is needed in
future cohorts with larger sample sizes.
Previous studies regarding Alzheimer’s disease, neuroti-

cism, or asthma found that items or symptoms showed, to
some degree, increased ORs between the case loci and
control loci compared with those from previous studies
using broadly defined disease diagnoses8–10. These findings
may indicate that GWAS based on a symptom or an item
could identify genetically more homogeneous subgroups
and let us hypothesize that a relatively reasonable combi-
nation of symptoms or items could identify more geneti-
cally homogeneous subgroups. In contrast, Chaste and
colleagues showed that stratifying children with ASD based
on the phenotype only modestly increased power in
GWAS11. The discrepancy between their findings and ours
might be explained by usage of phenotype variables. Chaste
and colleagues used one item or symptom alone with
limited number of subgroups, whereas we used combina-
tions of them with a machine learning method with a
potentially sufficient number of clusters. DeMichele-Sweet
and colleagues reported that subgrouping only by having
psychosis could lead to the identification of limited loci that
had small effects50, but Mukherjee and colleagues found a
substantial number of suggestive loci that had extreme ORs
after categorizing persons with Alzheimer’s disease based
on relative performance across cognitive domains by
modern psychometric approaches8.
Validation of clusters is essential. In the present study,

we selected the k-means algorithm, focused on ADI-R

items and treatment as variables, and determined cluster
numbers based on the λ of the Q–Q plots. Although we
believe this approach is one of the relevant ways, selection
of variables, selection of algorithms and selection of
cluster numbers still remain to be considered in future
mathematical and biological cluster validation studies
because controversies surrounding evaluation of the
quality of the clusters are important issues and are still
ongoing and because validated clusters may lead to elu-
cidate the genetic architectures of ASD7.
The present study has a limitation to be noted. Sub-

stantial differences in the two genotyping platforms may
have affected the results of the replication study. The
Omni2.5 array includes 2,383,385 autosomal SNPs,
whereas the 1Mv3 array includes 1,147,689 SNPs, with
675,923 shared SNPs between the two. Of the 65 statisti-
cally significant chromosomal loci in the discovery data,
only seven chromosomal loci were shared between the
two arrays.
Our study demonstrated that if the data set consists of

multiple heterogeneous subgroups, even a subgroup that
includes a much smaller number of homogeneous indi-
viduals could detect high-impact genetic factors. Hypo-
thetical examples of the concept of cluster-based GWAS
are shown in Supplementary Fig. 4. As shown in Table 2,
only 30 etiologically homogeneous probands and 300
controls can have a statistical power of ~1.00, calculated
using the method based on the results in Nam’s study19.
Although the integral model, which assumes many
genetic variants have a small effect, may contribute to the
formation of some subgroups of ASD, our results indicate
that clustering by specific phenotypic variables may pro-
vide a candidate example for identifying etiologically
similar cases of ASD.
Our data indicate the relevance of cluster-based GWAS

as a means to identify more homogeneous subgroups of
ASD than broadly defined subgroups. Future investigation
of cluster validation and replication with a larger sample

Table 3 Results of replication studies in the 1Mv3 data set for statistically significant chromosomal loci in the discovery
studies.

Cluster no. ID Chr hg19 Minor/major MAF (%) OR 95% CI P GENESYMBOL Function

5 rs13332627 16 22,874,928 G/A 10.0 0.50 0.18–1.45 0.195

5 rs7199670 16 22,875,238 A/G 12.2 0.51 0.20–1.33 0.1629 HS3ST2 Intronic

5 rs1054028 16 22,927,214 G/A 15.0 0.51 0.22–1.21 0.121 HS3ST2 UTR3

10 rs1876769 2 22,678,191 A/G 1.4 NA – 0.1822 LINC01822, LINC01884 Intergenic

13 rs11064685 12 119,590,881 G/A 8.2 1.89 1.06–3.37 0.02858 SRRM4 Intronic

14 rs7189512 16 66,324,048 A/G 3.5 2.16 0.83–5.67 0.1085 LINC00922, CDH5 Intergenic

15 rs276833 2 114,769,078 A/G 1.3 0.71 0.09–5.75 0.75 LINC01191, DPP10 Intergenic

Chr chromosome, OR odds ratio, CI confidence interval.
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size is therefore warranted. Such studies will provide clues
to elucidate the genetic structures and etiologies of ASD
and facilitate the development of precision medicine
for ASD.

Acknowledgements
We are grateful to all of the families at the participating SSC sites, as well as the
staff at the Simons Foundation Autism Research Initiative (SFARI). The present
study was supported by the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) KAKENHI grant numbers 19390171, 16H05242 and
19H03894. MEXT had no role in the design or execution of the study.

Author details
1Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
2Graduate School of Medicine, Tohoku University, Sendai, Japan. 3RIKEN Center
for Advanced Intelligence Project, Tokyo, Japan. 4Tohoku University Hospital,
Tohoku University, Sendai, Japan. 5School of Medicine, Teikyo University,
Tokyo, Japan. 6School of Medicine, Tohoku Medical and Pharmaceutical
University, Sendai, Japan. 7International Research Institute of Disaster Science,
Tohoku University, Sendai, Miyagi, Japan

Data availability
All data used in the study are available only to those granted access by the
Simons Foundation.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-00951-x).

Received: 14 April 2020 Revised: 15 July 2020 Accepted: 22 July 2020

References
1. American Psychological Association (2013): Diagnostic and Statistical Manual

of Mental Disorders (DSM–5). Washington: American Psychological
Association.

2. Geschwind, D. H. & State, M. W. Gene hunting in autism spectrum disorder: on
the path to precision medicine. Lancet Neurol. 14, 1109–1120 (2015).

3. Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British
twin study. Psychol. Med. 25, 63–77 (1995).

4. Lauritsen, M. B., Pedersen, C. B. & Mortensen, P. B. Effects of familial risk factors
and place of birth on the risk of autism: a nationwide register-based study. J.
Child Psychol. Psychiatry 46, 963–971 (2005).

5. Gene, S. Gene scoring. 2008. https://gene.sfari.org/database/gene-scoring/.
6. Eissa, N. et al. Current enlightenment about etiology and pharmacological

treatment of autism spectrum disorder. Front. Neurosci. 12, 304 (2018).
7. Traylor, M., Markus, H. & Lewis, C. M. Homogeneous case subgroups

increase power in genetic association studies. Eur. J. Hum. Genet. 23,
863–869 (2015).

8. Mukherjee, S. et al. Genetic data and cognitively defined late-onset Alzhei-
mer’s disease subgroups. Mol. Psychiatry. 2018. https://doi.org/10.1038/s41380-
018-0298-8.

9. Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level
analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 9, 905
(2018).

10. Lavoie-Charland, E., Berube, J. C., Boulet, L. P. & Bosse, Y. Asthma susceptibility
variants are more strongly associated with clinically similar subgroups. J.
Asthma 53, 907–913 (2016).

11. Chaste, P. et al. A genome-wide association study of autism using the Simons
simplex collection: does reducing phenotypic heterogeneity in autism
increase genetic homogeneity? Biol. Psychiatry 77, 775–784 (2015).

12. MacQueen, J. Some methods for classification and analysis of multivariate
observations. In: Fifth Berkeley Symposium on Mathematical Statistics and
Probability. Berkeley: University of California Press, 1967, pp 281–297.

13. World Medical Association. World medical association Declaration of Helsinki:
ethical principles for medical research involving human subjects. JAMA 310,
2191–2194 (2013).

14. Fischbach, G. D. & Lord, C. The simons simplex collection: a resource for
identification of autism genetic risk factors. Neuron 68, 192–195 (2010).

15. Beggiato, A. et al. Gender differences in autism spectrum disorders: divergence
among specific core symptoms. Autism Res. 10, 680–689 (2017).

16. Kuriyama, S. et al. Pyridoxine treatment in a subgroup of children with per-
vasive developmental disorders. Dev. Med. Child Neurol. 44, 284–286 (2002).

17. Obara, T. et al. Potential identification of vitamin B6 responsiveness in autism
spectrum disorder utilizing phenotype variables and machine learning
methods. Sci. Rep. 8, 14840 (2018).

18. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis.
PLoS Genet. 2, e190 (2006).

19. Nam, J. M. Simple approximation for calculating sample sizes for detecting
linear trend in proportions. Biometrics 43, 701–705 (1987).

20. Cutting, D. R., Karger, D. R., Pedersen J. O. & Tukey J. W. Scatter/gather: a
cluster-based approach to browsing large document collections. In: Pro-
ceedings of the 15th Annual ACM SIGIR Conference on Research and
Development in Information Retrieval. 318–329 (New York: Association for
Computing Machinery (ACM), 1992).

21. Raykov, Y. P., Boukouvalas, A., Baig, F. & Little, M. A. What to do when K-means
clustering fails: a simple yet principled alternative algorithm. PLoS ONE 11,
e0162259 (2011).

22. Guo, G., Chen, L., Ye, Y. & Jiang, Q. Cluster validation method for determining
the number of clusters in categorical sequences. IEEE Trans. Neural Netw. Learn
Syst. 28, 2936–2948 (2017).

23. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of
the 7q11.23 Williams syndrome region, are strongly associated with autism.
Neuron 70, 863–885 (2011).

24. Spielman, R. S. & Ewens, W. J. A sibship test for linkage in the presence of
association: the sib transmission/disequilibrium test. Am. J. Hum. Genet 62,
450–458 (1998).

25. Freidlin, B., Zheng, G., Li, Z. & Gastwirth, J. L. Trend tests for case-control studies
of genetic markers: power, sample size and robustness. Hum. Hered. 53,
146–152 (2002).

26. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2002).

27. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164
(2010).

28. Wang, Y. et al. Genome-wide association study of piglet uniformity and far-
rowing interval. Front. Genet. 8, 194 (2017).

29. Anttila, V. et al. Analysis of shared heritability in common disorders of the
brain. Science 360, eaap8757 (2018).

30. Redies, C., Hertel, N. & Hubner, C. A. Cadherins and neuropsychiatric disorders.
Brain Res. 1470, 130–144 (2012).

31. Varghese, M. et al. Autism spectrum disorder: neuropathology and animal
models. Acta Neuropathol. 134, 537–566 (2017).

32. Atsem, S. et al. Paternal age effects on sperm FOXK1 and KCNA7 methylation
and transmission into the next generation. Hum. Mol. Genet. 25, 4996–5005
(2016).

33. Barnby, G. et al. Candidate-gene screening and association analysis at the
autism-susceptibility locus on chromosome 16p: evidence of association at
GRIN2A and ABAT. Am. J. Hum. Genet. 76, 950–966 (2005).

34. Minhas, H. M. et al. An unbalanced translocation involving loss of 10q26.2 and
gain of 11q25 in a pedigree with autism spectrum disorder and cerebellar
juvenile pilocytic astrocytoma. Am. J. Med. Genet. A 161a, 787–791 (2013).

35. Abou-Donia, M. B., Suliman, H. B., Siniscalco, D., Antonucci, N. & ElKafrawy, P. De
novo blood biomarkers in autism: autoantibodies against neuronal and glial
proteins. Behav. Sci. (Basel) 9, E47 (2019).

36. Lo Vasco, V. R. Role of phosphoinositide-specific phospholipase C η2 in iso-
lated and syndromic mental retardation. Eur. Neurol. 65, 264–269 (2011).

Narita et al. Translational Psychiatry          (2020) 10:290 Page 11 of 12

https://doi.org/10.1038/s41398-020-00951-x
https://doi.org/10.1038/s41398-020-00951-x
https://gene.sfari.org/database/gene-scoring/
https://doi.org/10.1038/s41380-018-0298-8
https://doi.org/10.1038/s41380-018-0298-8


37. Potkin, S. G. et al. Gene discovery through imaging genetics: identification of
two novel genes associated with schizophrenia. Mol. Psychiatry 14, 416–428
(2009).

38. Konopaske, G. T. et al. Dysbindin-1 contributes to prefrontal cortical dendritic
arbor pathology in schizophrenia. Schizophr. Res. 201, 270–277 (2018).

39. Openshaw, R. L. et al. JNK signalling mediates aspects of maternal immune
activation: importance of maternal genotype in relation to schizophrenia risk.
J. Neuroinflamm. 16, 18 (2019).

40. Ikeda, M. et al. Identification of novel candidate genes for treatment response
to risperidone and susceptibility for schizophrenia: integrated analysis among
pharmacogenomics, mouse expression, and genetic case-control association
approaches. Biol. Psychiatry 67, 263–269 (2010).

41. Teng, X. et al. KCTD: a new gene family involved in neurodevelopmental and
neuropsychiatric disorders. CNS Neurosci. Ther. 25, 887–902 (2019).

42. Lin, C. H., Huang, M. W., Lin, C. H., Huang, C. H. & Lane, H. Y. Altered mRNA
expressions for N-methyl-D-aspartate receptor-related genes in WBC of
patients with major depressive disorder. J. Affect. Disord. 245, 1119–1125 (2019).

43. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease
identifies new risk loci and implicates Abeta, tau, immunity and lipid pro-
cessing. Nat. Genet. 51, 414–430 (2019).

44. Cimino, P. J., Sokal, I., Leverenz, J., Fukui, Y. & Montine, T. J. DOCK2 is a
microglial specific regulator of central nervous system innate immunity
found in normal and Alzheimer’s disease brain. Am. J. Pathol. 175,
1622–1630 (2009).

45. Sepulveda-Diaz, J. E. et al. HS3ST2 expression is critical for the abnormal
phosphorylation of tau in Alzheimer’s disease-related tau pathology. Brain
138, 1339–1354 (2015).

46. Ghosh, D., Levault, K. R. & Brewer, G. J. Relative importance of redox buffers
GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-
like mouse neurons. Aging Cell 13, 631–640 (2014).

47. Zong, Y. et al. miR-29c regulates NAV3 protein expression in a transgenic
mouse model of Alzheimer’s disease. Brain Res. 1624, 95–102 (2015).

48. Irimia, M. et al. A highly conserved program of neuronal microexons is mis-
regulated in autistic brains. Cell 159, 1511–1523 (2014).

49. Quesnel-Vallieres, M. et al. Misregulation of an activity-dependent splicing
network as a common mechanism underlying autism spectrum disorders.
Mol. Cell 64, 1023–1034 (2016).

50. DeMichele-Sweet, M. A. A. et al. Genetic risk for schizophrenia and psychosis in
Alzheimer disease. Mol. Psychiatry 23, 963–972 (2018).

Narita et al. Translational Psychiatry          (2020) 10:290 Page 12 of 12


	Clustering by phenotype and genome-wide association study in autism
	Introduction
	Subjects and methods
	data sets
	Clustering
	Genotype data and quality control
	Statistical analysis

	Results
	Cluster-based GWAS
	Gene interpretation
	Replication study

	Discussion
	Acknowledgements




