12 research outputs found

    Non-volatile heterogeneous III-V/Si photonics via optical charge-trap memory

    Full text link
    We demonstrate, for the first time, non-volatile charge-trap flash memory (CTM) co-located with heterogeneous III-V/Si photonics. The wafer-bonded III-V/Si CTM cell facilitates non-volatile optical functionality for a variety of devices such as Mach-Zehnder Interferometers (MZIs), asymmetric MZI lattice filters, and ring resonator filters. The MZI CTM exhibits full write/erase operation (100 cycles with 500 states) with wavelength shifts of Δλnon−volatile=1.16nm\Delta\lambda_{non-volatile} = 1.16 nm (Δneff,non−volatile 2.5×10−4\Delta n_{eff,non-volatile} ~ 2.5 \times 10^{-4}) and a dynamic power consumption << 20 pW (limited by measurement). Multi-bit write operation (2 bits) is also demonstrated and verified over a time duration of 24 hours and most likely beyond. The cascaded 2nd order ring resonator CTM filter exhibited an improved ER of ~ 7.11 dB compared to the MZI and wavelength shifts of Δλnon−volatile=0.041nm\Delta\lambda_{non-volatile} = 0.041 nm (Δneff,non−volatile=1.5×10−4\Delta n_{eff, non-volatile} = 1.5 \times 10^{-4}) with similar pW-level dynamic power consumption as the MZI CTM. The ability to co-locate photonic computing elements and non-volatile memory provides an attractive path towards eliminating the von-Neumann bottleneck

    Low-loss hybrid silicon tapers

    No full text
    Two types of hybrid silicon tapers are studied. Single taper loss is 0.3 - 0.5 dB, enabling integration of III/V actives on silicon-on-insulator passive circuitry with low loss

    Frequency comb dynamics of a 13 μm hybrid-silicon quantum dot semiconductor laser with optical injection

    No full text
    International audienceThis work reports on the influence of bias voltage applied on a saturable absorber (SA) on a subthreshold linewidth enhancement factor (LEF) in hybrid-silicon quantum dot optical frequency comb lasers. Results show that the reverse bias voltage on SA contributes to enlarge the LEF and improve the comb dynamics. Optical injection is also found to be able to improve the comb spectrum in terms of 3 dB bandwidth and its flatness. Such novel findings are promising for the development of high-speed dense wavelength-division multiplexing photonic integrated circuits in optical interconnects and datacom applications

    Integrated recirculating optical hybrid silicon buffers

    No full text
    We present our work on fully integrated hybrid silicon optical buffers capable of holding 40 byte packets at 40 Gb/s. These devices consist of low loss silicon waveguides and cascaded amplifiers to overcome passive losses in a 1.1 m long delay line. Since cascading multiple gain elements leads to ASE (noise) accumulation, reshaping elements in the form of saturable absorbers are integrated in the delay. Noise filtering in the buffer is investigated by simulating the eye diagram for a delay line with 1R regenerators and comparing it to that of a 2R regenerator. Finally, preliminary experimental data from the optical buffer is shown
    corecore