32 research outputs found
Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV)
In the present study we have analyzed hydrogen bonding in dimer and trimer of oxalic acid, based on a recently proposed charge and energy decomposition scheme (ETS-NOCV). In the case of a dimer, two conformations, α and β, were considered. The deformation density contributions originating from NOCV’s revealed that the formation of hydrogen bonding is associated with the electronic charge deformation in both the σ—(Δρσ) and π-networks (Δρπ). It was demonstrated that σ-donation is realized by electron transfer from the lone pair of oxygen on one monomer into the empty \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} orbital of the second oxalic acid fragment. In addition, a covalent contribution is observed by the density transfer from hydrogen of H-O group in one oxalic acid monomer to the oxygen atom of the second fragment. The resonance assisted component (Δρπ), is based on the transfer of electron density from the π—orbital localized on the oxygen of OH on one oxalic acid monomer to the oxygen atom of the other fragment. ETS-NOCV allowed to conclude that the σ(O---HO) component is roughly eight times as important as π (RAHB) contribution in terms of energetic estimation. The electrostatic factor (ΔEelstat) is equally as important as orbital interaction term (ΔEorb). Finally, comparing β-dimer of oxalic acid with trimer we found practically no difference concerning each of the O---HO bonds, neither qualitative nor quantitative
Low-basicity 5-HT7 Receptor Agonists Synthesized Using the van Leusen Multicomponent Protocol
A series of 5-aryl-1-alkylimidazole derivatives was synthesized using the van Leusen multicomponent
reaction. The chemotype is the first example of low-basicity scaffolds exhibiting high affinity for 5-HT7
receptor together with agonist function. The chosen lead compounds 3-(1-ethyl-1H-imidazol-5-yl)-5-
iodo-1H-indole (AGH-107, 1o, Ki 5-HT7=6nM, EC50=19nM, 176-fold selectivity over 5-HT1AR) and 1e
(5-methoxy analogue, Ki 5-HT7=30nM, EC50=60nM) exhibited high selectivity over related CNS targets,
high metabolic stability and low toxicity in HEK-293 and HepG2 cell cultures. A rapid absorption to the
blood, high blood-brain barrier permeation and a very high peak concentration in the brain (Cmax=2723
ng/g) were found for 1o after i.p. (5mg/kg) administration in mice. The compound was found active
in novel object recognition test in mice, at 0.5, 1 and 5mg/kg. Docking to 5-HT7R homology models
indicated a plausible binding mode which explain the unusually high selectivity over the related CNS
targets. Halogen bond formation between the most potent derivatives and the receptor is consistent
with both the docking results and SAR. 5-Chlorine, bromine and iodine substitution resulted in a 13, 27
and 89-fold increase in binding affinities, respectively, and in enhanced 5-HT1AR selectivity