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On the origin of internal rotation in ammonia borane
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Abstract The internal rotation in ammonia borane (AB) was
studied on the basis of natural orbitals for chemical valence
(NOCV) and eigenvectors for Pauli repulsion (NOPR). We
found that the total hyperconjugation stabilization (ca.
5 kcal mol−1), based on the charge transfer from the
occupied σ (B–H) orbitals into the empty σ*(N–H),
slightly favors the staggered conformation over the
eclipsed one; however, the barrier to internal rotation
in ammonia borane can be understood predominantly in
a ‘classical’ way, as originating from the steric (Pauli)
repulsion contributions (of the kinetic origin) that act
solely between N–H and B–H bonds. Repulsion be-
tween the lone pair of ammonia and the adjacent B–H
bonds was found to be dominant in absolute terms;
however, it does not determine the rotational barrier.
Similar conclusions on the role of CH↔HC repulsion
appeared to be valid for isoelectronic ethane.
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Introduction

One of the most important goals of theoretical chemistry is to
understand the origin of conformational changes in molecules
[1, 2]. In order to achieve this goal many methods can be

applied to the description of electronic structures: molecular
orbitals (MOs) [3, 4], localized molecular orbitals (LMOs)
[5–7], bond orders [8–17], atoms in molecules (AIM)
[18], Fermi hole [19], kinetic energy and information
theory based quantities [20–22], and various charge and
energy decomposition schemes [23–28]. A useful and
elegant approach suitable for description of energy pro-
files of chemical reactions was proposed by Torro-
Labbe and coworkers [29] based on the reaction force
concept. Bickelhaupt and Zeist [30] proposed the “acti-
vation strain model”, which also appears to be very
useful in the analysis of chemical reactions.

Rotation around a single carbon–carbon bond is one of the
most important conformational transitions in organic chemis-
try [31, 32]. A typical example is ethane, which exhibits
staggered and eclipsed conformations; the former minimum
energy structure is more stable than the transition state
eclipsed structure by ∼3.0 kcal mol−1 [33]. The classical and
intuitive explanation of the barrier suggested in organic text-
books is based on the steric repulsion between C–H bonds,
which is dominant in the eclipsed structure [34]. An alterna-
tive explanation is based on hyperconjugation stabilization,
which is stronger in the staggered conformation [35–38].
However, as pointed out by Mulliken [35], hyperconjugation
effect should have only a minor influence on the barrier. Bader
et al. [39] stated that the barrier to rotation in ethane can be
related to the polarization of charge density along the carbon–
carbon bond. Goodman and coworkers [40] have shown,
based on the natural bond orbitals (NBO) method, that eth-
ane ’s s t agge red confo rma t ion i s the r e su l t o f
hyperconjugation. This point of view was also presented by
Weinhold [41]. Goodman’s results based on the NBO
method have been challenged by the work of
Bickelhaupt and Baerends [42] based on the model of
a chemical bond originating from fragmented molecular
orbitals; according to these results the internal rotational
barrier in ethane is due to Pauli repulsion acting
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between the CH bonds of opposite CH3 units. Subse-
quent calculations by Mo and coworkers [44, 45] and
then by Pendas et al. [43], confirmed the classical,
steric-based interpretation of the barrier; in addition,
the former authors have shown that hyperconjugation
stabilizes the staggered conformer only by about
4 kJ mol−1 relative to the eclipsed form [45]. A very
elegant recent paper by Mo and Gao [46] provided a
compact overview of the most important studies on this
subject; the main conclusion is that the internal rota-
tional barrier in ethane is due predominantly to steric
effects acting between C–H bonds, with minor partici-
pation stemming from hyperconjugation.

We have recently developed the ETS-NOCV scheme
[47–50] by combining the extended transition state
(ETS) [25, 26] energy decomposition approach with
the natural orbitals for chemical valence (NOCV) meth-
od [51–57]. ETS-NOCV has proved suitable for quali-
tative and quantitative description of the crucial compo-
nents (σ, π, δ, etc.) that constitute various types of
chemical bonds [58–61]. In addition, the energy profiles
of some chemical reactions can be also characterized
[62, 63]. More importantly for this study, it was shown
that NOCV representation allows for qualitative and
quantitative description of hyperconjugation effects [47,
48]. Furthermore, the ETS energy decomposition
scheme provides quantitative information on the Pauli
repulsion effects [2, 25, 26].

Therefore, the main goal of this article was to apply for the
first time the ETS-NOCV charge and energy decomposition
scheme to analysis of the internal rotation in ammonia borane.
Hyperconjugation and steric factors will be discussed in a
detailed way. It should be noted that ammonia borane is
considered nowadays as one of the most promising hydrogen
storage materials. In addition, it was already proven that
ammonia borane exhibits dissimilar features as compared to
isoelectronic ethane [64]. Furthermore, the present study
sheds additional qualitative and quantitative light on the steric
repulsion in ammonia borane by decomposition of total Pauli
repulsion into specific contributions stemming from different
symmetry (σ and π). In order to achieve this goal, we
defined for the first time the eigenvectors for Pauli
repulsion; in this representation, one can thus discuss
the Pauli repulsion components originating from differ-
ent symmetries. For comparison, similar analyses will
be performed for ethane.

Computational details

All DFT calculations presented here were based on the Am-
sterdam Density Functional (ADF 2009.01) program [2,
65–68] in which the ETS-NOCV scheme was implemented
[47–63]. The Becke-Perdew exchange-correlation functional

[69, 70] was applied (BP86). A standard triple-zeta STO basis
containing two sets of polarization functions (TZ2P) was
adopted for all atoms. The contours of deformation densities
were plotted based on ADF-GUI interface [71].

Computational methods

Our analysis is based on the ETS-NOCVapproach, which is a
combination of the extended transition state (ETS) [25, 26]
methodwith the natural orbitals for chemical valence (NOCV)
scheme [51–57].

The basic concept of the ETS scheme involves partitioning
of the total bonding energy ΔEtotal between interacting frag-
ments into four components:

ΔEtotal ¼ ΔEdist þΔEelstat þΔEPauli þΔEorb ð1Þ

The first component, ΔEdist, referred to as the distor-
tion term, represents the amount of energy required to
promote the separated fragments from their equilibrium
geometry to the structure they will take up in the
combined molecule; it can also be seen as strain energy.
The second term, ΔEelstat, corresponds to the classical
electrostatic interaction between the promoted fragments
as they are brought to their positions in the final com-
plex. The third term, ΔEPauli, accounts for the repulsive
Pauli interaction between occupied orbitals on the two
fragments in the combined molecule. It is calculated as
the difference between the energies of orthogonalized
and non-orthogonalized fragments [2, 25]. Finally, the
last stabilizing term, ΔEorb, represents the interactions
between the occupied molecular orbitals of one frag-
ment with the unoccupied molecular orbitals of the
other fragment as well as the mixing of occupied and
virtual orbitals within the same fragment (inner-fragment
polarization). This energy term, ΔEorb, may be linked to
the electronic bonding effect coming from the formation
of a chemical bond (Eq. 2).

The NOCV are eigenvectors that diagonalize deformation
density matrix ΔPorb = Pmolecule − P0, where P0 corresponds to
the sum of density matrices for orthogonalized fragments; it
has been shown that the natural orbitals for chemical valence
pairs (ψ-k,ψk) decompose the deformation density Δρorb into
NOCV-contributions, Δρorb

k :

Δρorb rð Þ ¼
XM=2

k¼1

vk
h
−ψ2

−k rð Þ þ ψ2
k rð Þ

i
¼

XM=2

k¼1

Δρkorb ð1Þ

where νk and M are the NOCV eigenvalues and the
number of basis functions, respectively. Visual inspec-
tion of deformation density plots (Δρorb

k ) helps to attri-
bute symmetry and the direction of the charge flow. In
addition, information gained from the analysis of defor-
mation density plots can be enriched by providing the
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energetic estimations, ΔEorb
k , for each Δρorb

k within
ETS-NOCV scheme:

ΔEorb ¼
X

k

ΔEk
orb ¼

XM=2

k¼1

vk
h
−FTS

−k;−k þ FTS
k;k

i
ð2Þ

where Fi,i
TS are diagonal Kohn-Sham matrix elements defined

over NOCV with respect to the transition state density (at the
midpoint between density of the molecule and the sum of
fragment densities). The above componentsΔEorb

k provide the
energetic estimation of Δρorb

k that may be related to the
importance of a particular electron flow channel for the bond-
ing between the considered molecular fragments.

In the present study, in analogy to NOCVs, we defined for
the first time the natural orbitals (eigenvectors) for Pauli
repulsion, ϕk, that diagonalize the Pauli deformation density
matrix, ΔPPauli = P0−Pisolated, where Pisolated is the sum of
density matrices for non-orthogonalized fragments, whereas
P0 correspond to the sum of density matrices for orthogonal-
ized fragments. Such eigenvectors decompose the total Pauli
deformation density, ΔρPaul i=ρ0 (orthogonalized-
fragments)−ρ (non-orthogonalized-fragments), into the
NOCV-like contributions (Δρk

Pauli) (in analogy to Eq. 1):

ΔρPauli rð Þ ¼
XN=2

k¼1

vPaulik

h
−ϕ2

−k rð Þ þ ϕ2
k rð Þ

i
¼

XN=2

k¼1

ΔρPaulik rð Þ ð3Þ

The total charge transferred in this channel can be
considered as:

ΔqPaulik ¼ νk
Pauli ð4Þ

The present study characterized not only the total values of
Pauli repulsion (ΔEPauli) in ammonia borane based on the
original ETS scheme (Eq. 1) but, in addition, provided a more
detailed picture by analyses of both the Pauli repulsion con-
tributions Δρk

Pauli (Eq. 3) and the corresponding quantitative
charge estimations Δqk

Pauli (Eq. 4). This approach (Eqs. 3, 4)
was implemented by one of us in the home version of
ADF2009.01. At present, the energetic Pauli repulsion contri-
butions (ΔEPauli

k ) from Δρk
Pauli (calculated in an analogous

way to Eq. 2) are unavailable. Hence, we focused our attention
on the quantitative measures of Δρk

Pauli based on Eq. 4. Red
areas of deformation density channels correspond to charge
depletion, whereas blue indicates charge accumulation upon
bond formation.

Due to the fact that the steric interaction, which is a non-
observable quantity [72], is very often attributed in the litera-
ture to Pauli repulsion quantum effect [2, 43, 46], we use both
terms interchangeably throughout the text. Finally, we should
note that Pauli repulsion is one of the bonding components
in various energy decomposition schemes; hence, we believe

that a more detailed description of this term based on Eqs. 3, 4,
could be of wide interest. It is very important to point out that
the main source of the Pauli repulsion is related to an
increase in the kinetic energy contribution; so we could also
refer to the Pauli repulsion term as kinetic repulsion due to
the Pauli exclusion principle [2]. Such a concept, which
relates the steric repulsion to the ‘kinetic energy pressure’
has already been put forward by various authors [73, 74]. In
addition, the Pauli repulsion contribution appears to qualita-
tively correlate very well with the experimental Taft’s steric
parameters [75].

Results and discussion

We will start with a brief description of the bonding situation
in the most stable staggered conformation (S) of ammonia
borane (Fig. 1). It can be seen from Table 1 that the bond
dissociation energy (−ΔEtotal) amounts to 31.94 kcal mol−1

(BP86/TZ2P). This value fits well to the experimental enthal-
py estimated by Haaland (31.1 ± 1 kcal mol−1 [76, 77]) as well
as to other theoretical estimations [48, 78–81]. In line with
previous studies [48, 78, 82–85], we found a slight dominance
(by ∼0.7 kcal mol−1) of the electrostatic stabilization over the
orbital interaction term (Table 1). Decomposition of the latter
stabilizing term into NOCV-based deformation density chan-
nels leads to the conclusion that donation (Δρorb

σ ) from the
lone electron pair of ammonia to the lowest unoccupied orbital
of BH3 is by far most dominant (ΔEorb

σ =−66.32 kcal mol−1)
as compared to the two hyperconjugation contributions,
Δρorb

hyp1, Δρorb
hyp2; the corresponding orbital interaction stabili-

zations are ΔEorb
hyp1=ΔEorb

hyp2=−2.30 kcal mol−1 (Fig. 2). The
latter two degenerated contributions stem from charge transfer
from the occupied σ (B–H) orbitals into the empty σ*(N–H)
(Fig. 2). It is noteworthy that, in the isoelectronic ethane, the
sum of stabilization arising from the two orthogonal
hyperconjugation components was found to be significantly
stronger (∼10 kcal mol−1) [46, 85].

It is clear from Fig. 1 that rotation from the staggered to the
eclipsed form leads to a change in energy, by 1.93 kcal mol−1.
This barrier agrees quite well with the experimental value of
2.07 kcal mol−1 determined based on microwave spectra [86],
and with other high level computations [87]. It is very impor-
tant to point out that when going from the staggered (S) to the
eclipsed isomer (E), one observes a notable stretch of the B–N
bond, by ∼0.03 Å. Such elongation leads expectedly to a
significant decrease in Pauli repulsion, by 7.27 kcal mol−1;
at the same time the electrostatic (ΔEelstat) and orbital inter-
action (ΔEorb) contributions become less stabilizing, by
4.14 kcal mol−1 and 4.69 kcal mol−1, respectively (see Table 1
and the blue line in Fig. 3). From the examples of ethane [42]
or biphenyl [88], it is known that this type of elongation when
going from one isomer to the other is due to the steric (Pauli)
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repulsion. As indicated in a series of recent works [42–46, 88,
89], in order to estimate and characterize the forces leading to
such elongation, one must first consider rigid rotation from the
staggered to the eclipsed conformation; we have labeled such
eclipsed conformation (in the staggered geometry) as Es

geom.
We can clearly see now from Table 1 and Fig. 3 (the orange
curve), that an increase in the Pauli repulsion contribution, by
2.11 kcal mol−1, is noted when going from S to Es

geom; it is
important to note that the remaining bonding components are
practically unchanged. A similar trend, i.e., the maximum
Pauli repulsion in ammonia borane with the dihedral angle

∠(H–B–N–H) = 0.0, is noted when considering the rigid
rotation from the geometry of the eclipsed structure to the
staggered one (Se

geom) (gray curve in Fig. 3). Thus, the Pauli
(steric) repulsion contribution is responsible for stretching of
the B–N bond and, accordingly, for the rotational barrier in
ammonia borane; the analogous situation holds true for the
ethane molecule, as demonstrated first by Bickelhaupt et al.
[42] and then by others [43–46]. An increased kinetic repul-
sion (themain source of the Pauli term) in the Es

geom geometry
is related through the virial theorem to the existence of repul-
sive forces acting predominantly on nitrogen and boron nuclei

Fig. 1 Energy profile for internal rotation in ammonia borane. B–N bond lengths (in Å) are indicated

Table 1 Extended transition state (ETS)a,b energy decomposition results describing the H3N–BH3 bond in various isomers of ammonia borane. Charge
estimates for Pauli repulsion contributions are indicatedc

S E E−S Es
geom

ΔEtotal −31.94 −30.01 1.93 −29.87
ΔEdist 12.65 13.02 0.37 12.65

ΔEelstat −77.32 −73.18 4.14 −77.8
ΔEPauli 109.39 102.12 −7.27 111.5

ΔEorb −76.66 −71.97 4.69 −76.22
ΔQglobal

Pauli (Δq1
Pauli+Δq2

Pauli+Δq3
Pauli) 1.1833 1.1693 −0.014 1.2135

Δq1
Pauli 0.7261 0.7049 −0.0212 0.7267

Δq2
Pauli 0.2286 0.2325 0.0039 0.2434

Δq3
Pauli 0.2286 0.2319 0.0033 0.2434

aΔEtotal = ΔEorb + ΔEPauli + ΔEelstat + ΔEdist [kcal mol−1 ]
b Labels assigned in Fig. 1; Es

geom corresponds to the eclipsed structure in the staggered geometry
c See Eqs. 3, 4 in Computational Methods and Fig. 5
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[18]. It must be added that hypercongutation stabilizations
stemming from the charge transfer from the occupied σ
(B–H) orbitals into the empty σ*(N–H) (Δρorb

hyp1, Δρorb
hyp2),

favors the staggered conformation (Fig. 2), although the effect
is minor (∼0.4 kcal mol−1) compared to changes in the re-
maining bonding contributions (Table 1). A quantitatively
similar effect is observed for the change in the energy distor-
tion contribution (ΔEdist) (Table 1).

Let us now focus our attention on detailed changes in the
Pauli repulsion contributions in the three ammonia borane
isomers, S, Es

geom and E. Figure 4 presents the total Pauli
deformation density contours (ΔρPauli) together with the cor-
responding energy values (ΔEPauli).

As already stated, the S→ Es
geom transition leads to a jump

in the Pauli term that it is then ‘relieved’ by elongation of the
B–N bond in step Es

geom→E. The important question that
arises at this point is how the total Pauli repulsion is

‘distributed’ between NH3 and BH3 fragments. An analysis
of function ΔρPauli leads to the observation that electrons are
removed from the N–B binding region (in fact, it is a mani-
festation of the Pauli exclusion principle [2, 90]); although one
can see that the red lobes extend also to the areas of NH↔HB
interaction. However, such contours do not allow us to extract
information on whether the total changes in Pauli repulsion
are determined by the repulsive interaction between the lone
electron pair of ammonia with the occupied σ (B–H) orbitals
or directly by ‘classical’ N-H↔H-B repulsion [an interaction
between the occupied σ (B–H) orbitals with the occupied σ
(N–H)]. In order to obtain such separated information, we
have decomposed total Pauli repulsion ΔρPauli into the con-
tributions (Δρk

Pauli) according to Eq. 3. The three leading Pauli
deformation density channels, Δρ1

Pauli, Δρ2
Pauli , Δρ3

Pauli, to-
gether with the corresponding quantitative charge estimations
(Eq. 4) are presented in Fig. 5. It should be noted that the total

Fig. 2 Dominant natural orbitals
for chemical valence (NOCV)-
based deformation density
channels, Δρorb

σ , Δρorb
hyp1, Δρorb

hyp1,
with the corresponding orbital
interaction energies for the
alternative isomers of ammonia
borane. The contour value is |Δρ|
= 0.005 a.u. for Δρorb

σ , whereas
for remaining hyperconjugation
contributions 0.001 a.u. was
applied. Blue/red contours
correspond to accumulation/
depletion of electron density. S
Fully optimized staggered isomer,
Es

geom eclipsed structure in the
staggered geometry, E fully
optimized eclipsed isomer
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charge, ΔQglobal
Pauli =Δq1

Pauli+Δq2
Pauli+Δq3

Pauli, that is removed
from the H3N–BH3 binding region correlates well with the
trend based on the Pauli repulsion energy (Table 1, Fig. 4).
Qualitative inspection of the contours Δρi

Pauli leads to the
important observation that the first channel (Δρ1

Pauli) corre-
sponds solely to the interaction between the lone electron pair
of ammonia with the B–H bonds, whereas the two latter
orthogonal contributions (Δρ2

Pauli,Δρ3
Pauli) show NH↔HB

repulsion (Fig. 5). More importantly, quantitative analysis of
the charge depletion, based on the eigenvalues (Eq. 3), leads to

the conclusion that, when going from S→ Es
geom, the major

changes (by 0.0148 a.u.) are within the second and third
values ofΔq2

Pauli,Δq3
Pauli. The repulsionΔρ1

Pauli characterized
by Δq1

Pauli remains unchanged. Once going to the relaxed
eclipsed structure, the Pauli contribution is further ‘relieved’
(Δρi

Pauli values decrease in line with ΔEPauli). These results
show that an increase in the total repulsion in the eclipsed
conformation compared to staggered (S→ Es

geom) is deter-
mined solely by the NH↔HB repulsion (of the kinetic origin)
due to the Pauli exclusion principle (an interaction between

Fig. 3 Pauli repulsion energies in the alternative isomers of ammonia
borane. Blue Fully relaxed structures; orange staggered geometry; gray
eclipsed geometry. S Fully optimized staggered isomer, Es

geom eclipsed

structure in the staggered geometry, Se
geom staggered structure in the

eclipsed geometry, E fully optimized eclipsed isomer

Fig. 4 Contours of the total Pauli
deformation density together with
the corresponding energies. In
addition, charge-based
estimations are presented based
on Eq. 4. The blue/red contours
correspond to accumulation/
depletion of electron density due
to the Pauli exclusion principle
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the electrons with the same spin as within the B–H and N–H
bonds). The repulsive contribution from the interaction be-
tween the lone electron pair of ammonia with the electrons of
B–H bonds (Δρ1

Pauli) is dominating in absolute terms; howev-
er, it does not influence the barrier. These results confirm the
‘classical’ view that the internal rotational barrier in ammonia
borane can be understood solely in terms of NH↔HB steric
(Pauli) effects, with minor participation stemming from the
hyperconjugation (Fig. 2) and geometry distortion term. It
must be further noted that we performed a detailed study of
the changes in Δqi

Pauli values (based on various sets of mol-
ecules) and have found that differences in the second decimal
place are quantitatively meaningful.

Finally, we performed similar ETS-NOCVand Pauli repul-
sion analyses for ethane and found that CH↔HC Pauli
(kinetic) repulsion channels are responsible for the rotation
of methyl groups (see Supplementary electronic material); this
is in line with the conclusions reached first by Bickelhaupt and
subsequently by other researchers [42–46]. It is important at
this point to cite another important work in the field explaining
the origin of rotation in ethane. It is possible to decompose the
barrier into changes in the kinetic (ΔT) and potential energy
contributions: nuclei–-nuclei (ΔVnn), nuclei–-electrons
(ΔVne) and electrons-electrons (ΔVee), as done by Bader

and others for ethane [18]. Such an approach, while very
physical and compelling, does not allow, for example, sepa-
rate discussion of the role of the hyperconjugation effect,
which is well rooted in chemistry. It was shown that rigid
rotation S→ Es

geom leads to a rise in all of the destabilizing
terms (ΔT ∼ +9 kcal mol−1, ΔVnn+ΔVee ∼ +16 kcal mol−1),
whereas the electron-nuclei stabilization is ΔVne ∼
−22 kcal mol−1. (Fig. 6.11 in [18]). At this non-equilibrium
geometry, the rise in kinetic energy is related, through the
virial theorem, to the repulsion force acting on the nuclei.
Accordingly, in the next step, Es

geom→E, the CC bond elon-
gates, which leads to weakening of the attraction (ΔVne ∼ +
207 kcal mol−1) and decrease in the repulsion (ΔVnn+ΔVee ∼
–201 kcal mol−1;ΔT ∼ –3 kcal mol−1, the values are provided
with respect to ethane in staggered geometry). One should
also note that various authors have combined the above con-
tributions in different ways [31]. Finally, Liu and Govind [91],
defined in an elegant way at DFT level, the steric contribution
(equal to the kinetic Weizsäcker term) from a difference
between the total electronic energy and the sum of electrostat-
ic (ΔVne+ΔVee+ΔVnn) and quantum energy terms ΔEq

(comprising the sumΔExc+ΔEPauli); the change in the kinetic
term due to the Pauli exclusion principle is incorporated in
ΔEPauli. It was shown that rigid rotation S→ Es

geom results in

Fig. 5 Dominant Pauli repulsion
deformation density channels,
Δρ1

Pauli, Δρ2
Pauli, Δρ3

Pauli, together
with the corresponding charge
estimations,
Δq1

Pauli,Δq2
Pauli,Δq3

Pauli in the
selected ammonia borane
conformations. The blue/red
contours correspond to
accumulation/depletion of
electron density. S Fully
optimized staggered isomer,
Es

geom eclipsed structure in the
staggered geometry, E fully
optimized eclipsed isomer
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the appearance of destabilizing forces originating from
the fermionic quantum contribution ΔEq; closer inspec-
tion of the author’s data shows that this change is due
entirely to a rise in the kinetic energy term [91]. Final-
ly, one should cite the separate work of Nagy [92], who
discussed the Fisher information based on the kinetic
term; the role of kinetic energy and the information
origin of the chemical bonding have been studied by
Nalewajski [22].

Concluding remarks

The present work studied for the first time the internal rotation
in ammonia borane based on our recently developed charge
and energy decomposition scheme, ETS-NOCV, as well as the
eigenvectors for Pauli repulsion. Detailed analyses of the
electronic and the steric factors were performed in order
to understand the origin of the barrier to rotation in
ammonia borane.

We found that the barrier to rotation, staggered↔ eclipsed,
is only ∼2 kcal mol−1. It was demonstrated using the ETS-
NOCV scheme that the hyperconjugation, originating from
the charge transfer from the occupiedσ (B–H) orbitals into the
empty σ*(N–H), favors the staggered isomer, although, quan-
titatively it leads to only a slight stabilization (∼5 kcal mol−1).
For ethane, this stabilization was more pronounced,
∼10 kcal mol−1. We have found, based on our newly
proposed scheme, the natural orbitals for Pauli repul-
sion, that rigid rotation from the staggered to the
eclipsed conformation causes predominantly the en-
hancement of steric (Pauli) repulsion acting solely be-
tween N–H and B–H bonds; this is subsequently ‘re-
lieved’, leading to elongation of the B–N bond in the
fully optimized eclipsed structure. Analogous trends
were found for ethane (Table S1). Accordingly, the
barrier to rotation in ammonia borane can be understood
in a classical way; namely, as originating from the steric
(Pauli) repulsion contributions that act solely between
N–H and B–H bonds. Repulsion between the lone pair
of ammonia and the B–H bonds is dominant in absolute
terms; however, it does not influence the barrier.
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