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Abstract The Average Information Content Maximization
algorithm (AIC-MAX) based on mutual information maxi-
mization was recently introduced to select the most discrimi-
natory features. Here, this methodology was applied to select
the most significant bits from the Klekota-Roth fingerprint
for serotonin receptors ligands as well as to select the most
important features for distinguishing ligands with activity for
one receptor versus another. The interpretation of selected
bits and machine-learning experiments performed using the
reduced interpretations outperformed the raw fingerprints
and indicated the most important structural features of the
analyzed ligands in terms of activity and selectivity. More-
over, the AIC-MAXmethodology applied here for serotonin
receptor ligands can also be applied to other target classes.

Keywords Fingerprints · Fingerprint reduction ·
Machine learning · Virtual screening · Selectivity studies ·
Serotonin receptors

Introduction

Fingerprints, which are a representation of a chemical com-
pound structure in the form of a bit string, have been
widely used in chemoinformatics for many years [1–9]. They
encode structural features into a bitstring, where a value

Electronic supplementary material The online version of this
article (doi:10.1007/s11030-017-9729-8) contains supplementary
material, which is available to authorized users.

B Dawid Warszycki
warszyc@if-pan.krakow.pl

1 Institute of Pharmacology, Polish Academy of Sciences,
Smetna street 12, 31-343 Kraków, Poland

2 Faculty of Mathematics and Computer Science, Jagiellonian
University, 6 Lojasiewicza Street, 30-348 Kraków, Poland

of “1” denotes the presence of a given pattern, and “0”
indicates its absence. The process of encoding a structure
into a fingerprint is based on either structural keys or graph
representations. Structural fingerprints are only one among
the methods applied for extracting the selectivity and/or
activity-determining features. Nevertheless, methods such
as pharmacophore modelling and interaction fingerprints are
much more time-consuming due to several additional steps
which have to be performed as conformers generation, com-
poundsmapping, docking, etc.Moreover, because of the very
wide pharmacophore features and interaction patterns defi-
nitions, an exhaustive statistical analysis of selected features
will be ambiguous [10–12]. Although the fingerprints with
the highest bit count display a high level of performance
in virtual screening campaigns [13], the share of irrelevant
bits in the representation increases the computational cost of
any calculations and also introduces informational noise. The
reduction in fingerprint length without information loss has
become an important challenge for cheminformatics. Several
methodologies, e.g., consensus fingerprints [14], bit scaling
[15], reverse fingerprints [16] and bit silencing [17] reduce
fingerprints by weighting of particular bits. An approach
proposed by Nisius et al. [18] selects fingerprint bits accord-
ing to their discrimination power which is measured by the
Kullback–Leibler divergence. Herein, we present the appli-
cation of the Average Information Content Maximization
algorithm (AIC-MAX) as another solution for fingerprint
reduction and hybridization in a case study of selecting the
most important structural features for serotonin receptor lig-
ands.

Materials and methods

To resolve the aforementioned difficulties with application
of high resolution fingerprints, the AIC-MAX algorithm
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[19] was recently introduced to select features with the
highest discriminatory potential in virtual screening-like
experiments. AIC-MAX uses mutual information normal-
ized by the Shannon entropy to rank a group of features
X = {X1, . . ., XN} with respect to their significance mea-
sured by activity label Y = {y}.

AICy(X) =

∑

x∈SN

∑

y∈{0,1}
Pi (x; y) log2 Pi (x;y)

P(x)Pi (y)

− ∑

y∈{0,1}
Pi (y) log2 Pi (y)

where SN = {0, 1}N is a binary sequence (fingerprint of
length N ) and Pi (y), Pi (x) and Pi (x; y) denote the prob-
abilities that {Yi = y}, {X1 = x1, . . ., XN = xN} and
{X1 = x1, . . ., XN = xN, Yi = y}, respectively.

The algorithm extends the application of existing tech-
niques [14–18,20] and allows the construction of a joint
reduced representation for several biological targets [19]. In
this paper, we apply AIC-MAX to analyze the most signifi-
cant features (determining activity) of 14 serotonin receptors
and construct various reduced representations that are able
to distinguish their ligands.

Among the popular fingerprints [21–25], the Klekota-
Roth fingerprint (KRFP) was selected because of its high
resolution (4860 bits) and non-hashing characteristics, indi-
cating that each bit corresponds to the exact structural
feature. This fingerprint was generated for compounds with
a determined affinity for any serotonin receptor (5-HT1AR,
5-HT1BR, 5-HT1DR, 5-HT1FR, 5-HT2AR, 5-HT2BR, 5-
HT2CR, 5-HT4R, 5-HT5AR, 5-HT6R, 5-HT7R) stored in
the ChEMBL database using PaDEL-Descriptor software
[23,26]. Compounds with activity for a particular serotonin
receptorwere divided into active (Ki or equivalent below 100
nM) and inactive sets (Ki or equivalent higher than 1000 nM,
Table 1) according to a previously utilizedmethodology [10].

Results and Discussion

The AIC-MAX algorithm selected one hundred bits for each
target (number optimized in a previous study) [19]. In total,
only 242 different bits (∼5%of theKRFPbits) covered struc-
tures of all studied actives, exhibiting a relatively high level
of similarity among the ligands of serotonin receptors. With
the exception of KRFP bits, which introduced only noise
(encoding, i.e., simple aliphatic chains), there were 29 dif-
ferent common substructures for the ligands of all serotonin
receptors, among which 8 bits characterized fragments with
a polarizable nitrogen atom and 5 an aromatic system—
two main pharmacophore features of 5-HTR ligands [27].
Moreover, for all receptors, bit encoding an amide bond
(#839) was indicated as crucial, yet more specific bits for

Table 1 Number of active and inactive compounds for serotonin recep-
tors retrieved from the ChEMBL database

Receptor Active Inactive
(Ki ≤ 100 nM) (Ki ≤ 1000 nM)

5-HT1A 4427 1230

5-HT1B 731 577

5-HT1D 877 236

5-HT1F 84 28

5-HT2A 2060 1081

5-HT2B 428 341

5-HT2C 1303 1050

5-HT3A 291 248

5-HT4 382 153

5-HT5A 69 146

5-HT6 1626 426

5-HT7 896 415

particular receptors were also found (such as the phenylsul-
fonylamide fragment (#4326) for ligands of 5-HT6R, and
o-metoxyphenyl (#4541) for 5-HT1AR, Fig. 1).

In the second experiment, AIC-MAXwas applied to select
the most important features for distinguishing ligands with
activity specific to one receptor versus another. The pro-
cedure was repeated for all pairs of receptors (66 times).
The set of “selective features” could be applied to search
for selective ligands, which is an essential goal of 5-HTR
ligand research. Analysis of the 5-HT1AR ligands revealed
297 bits (Fig. 2) that can be applied in selectivity studies.
Among them, 16 unique bits (#438, #467, #620, #647, #677,
#2265, #3157, #3179, #3402, #3682, #3788, #3892, #3943,
#4294 and #4295) were selected in every experiment against
each of the other serotonin receptors. Some of the above-
mentioned fragments can be described as noise; however,
five bits encoded an aliphatic amine. Moreover, very char-
acteristic structural features of 5-HT1AR ligands, such as
piperidine (#3157) and piperazine (#3179) moieties, were
also found within such bit collection, confirming previous
observations [10]. The algorithm also indicated crucial role
for the amide fragment (#2265), which is highly abundant in
5-HT1AR ligands.Analysis of themost discriminative bits for
the remaining receptors (see Supplementary Materials) also
revealed structural features that are typical for such recep-
tors, including usually secondary and tertiary amine groups
and different aromatic systems.

To evaluate the potential of selective bits, machine-
learning experiments (with the application of the random
forest method, see Supplementary Materials for details of
experimental settings) aimed at the separation of compounds
that act on individual target compared with other targets
were conducted [28]. Classification results were measured
byMathews Correlation Coefficient (MCC), which is a well-
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Fig. 1 One hundred of the most informative KRFP bits (shown
as black squares) selected using the AIC-MAX algorithm for each
serotonin receptor. The most significant common bits are marked:
blue—polarizable nitrogen atoms, green—aromatic systems, red—

amide moiety. Two highly specific fragments that are typical of
individual receptors are shown in orange circles (phenylsulfonylamide
for 5-HT6R and o-metoxyphenyl for 5-HT1AR). (Color figure online)

Fig. 2 One hundred (per one ‘off-target’) of the most informative bits
(shown as black squares) from KRFP selected using the AIC-MAX
algorithm for the 5-HT1A receptor to discriminate its ligands from com-

pounds that act on different serotonin receptors. The most significant
common bits are marked: blue—polarizable nitrogen atoms, green—
aromatic systems. (Color figure online)
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Fig. 3 Comparison between
Mathews Correlation
Coefficients values obtained in
random forest experiments for
raw (white background in panel
a) and reduced fingerprints (grey
background in panel a). Panel b
shows when the reduced
representation outperformed in
conducted experiments the raw
one ‘+’, vice versa ‘–’ or no
changes ‘nc’. (Color figure
online)
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known validation index, especially for imbalanced data sets
[29]. MCC takes values from−1 to+1, where+1 represents
perfect prediction, 0 represents random prediction, and −1
represents an inverse prediction. The results were compared
with data obtained for the original (raw) KRFP fingerprint.

The results (Fig. 3) indicate that the reduced fingerprint
is not only faster, but also more accurate than the origi-
nal KRFP fingerprint in 44 out of 66 cases, and the MCC
value increased. This observation was supported by a sta-
tistical analysis performed with the application of Wilcoxon
signed-rank test [30]. Results confirmed that at 0.05 signif-
icance level there is no reason to reject the hypothesis that
the reduced representation outperforms classical KRFP fin-
gerprint in the classification experiment. Improvement of the
results was observed most frequently for the 5-HT5AR lig-
ands (10 of 11 instances) and least frequently for 5-HT2AR
ligands (5 of 11 instances). This result can be explained by
the unique structures with affinity for the 5-HT5AR in com-
parison with other receptor ligands (but is in fact due to
their relatively small number, because usually so small set
of actives covers a very limited chemical space and therefore
reduced fingerprint is consisted of unique bits which makes
achieving high results easier in discrimination experiments).
Additionally, the 5-HT2AR ligands are often multipotent
compounds [31].

Experimental studies confirmed that since AIC-MAX
algorithm maximizes, a discriminatory power of a group of
bits (not only the potential of every bit individually) and
the resulted representation contains enough information to
characterize active compounds as original KRFP fingerprint.
Therefore, it can be applied in thewide spectrumof screening
applications aimed for particular target as well as for search-
ing the compounds selectivity potential, which is a one of the
most important challenges in computer-aided drug design.

Reduced fingerprints especially should be utilized in
machine-learning experiments where application of previous
conclusions should ensure outstanding results [32,33].

Conclusion

In this paper, we presented the application of the AIC-
MAX algorithm to identify the most significant chemical
patterns for fingerprint representation of serotonin receptor
ligands. Moreover, we demonstrated the performance of the
AIC-MAX algorithm for selecting the most important sub-
structures to distinguish ligands between two closely related
receptors, which is one of the most demanding challenges
in computer-aided drug design. The experimental studies
confirmed that AIC-MAX is able to produce a reduced rep-
resentation that preserves almost all meaningful information
contained in original KRFP fingerprint and provides efficient

numerical computations as well as outperforms the original
fingerprint.
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