288 research outputs found

    Properties of 8^{8}Be and 12^{12}C deduced from the folding--potential model

    Full text link
    The α\alpha--α\alpha differential cross sections are analyzed in the optical model using a double--folded potential. With the knowledge of this potential bound and resonance--state properties of α\alpha--cluster states in 8^{8}Be and 12^{12}C as well as astrophysical S--factors of 4^{4}He(α\alpha,γ\gamma)8^{8}Be and 8^{8}Be(α\alpha,γ\gamma)12^{12}C are calculated. Γγ\Gamma_{\gamma}--widths and B(E2)--values are deduced.Comment: 2 pages LaTeX, 2 figures can be obtained from the author

    A missing dimension in measures of vaccination impacts

    Get PDF
    Immunological protection, acquired from either natural infection or vaccination, varies among hosts, reflecting underlying biological variation and affecting population-level protection. Owing to the nature of resistance mechanisms, distributions of susceptibility and protection entangle with pathogen dose in a way that can be decoupled by adequately representing the dose dimension. Any infectious processes must depend in some fashion on dose, and empirical evidence exists for an effect of exposure dose on the probability of transmission to mumps-vaccinated hosts [1], the case-fatality ratio of measles [2], and the probability of infection and, given infection, of symptoms in cholera [3]. Extreme distributions of vaccine protection have been termed leaky (partially protects all hosts) and all-or-nothing (totally protects a proportion of hosts) [4]. These distributions can be distinguished in vaccine field trials from the time dependence of infections [5]. Frailty mixing models have also been proposed to estimate the distribution of protection from time to event data [6], [7], although the results are not comparable across regions unless there is explicit control for baseline transmission [8]. Distributions of host susceptibility and acquired protection can be estimated from dose-response data generated under controlled experimental conditions [9]–[11] and natural settings [12], [13]. These distributions can guide research on mechanisms of protection, as well as enable model validity across the entire range of transmission intensities. We argue for a shift to a dose-dimension paradigm in infectious disease science and community health

    Feasibility of Knots to Reduce the Maximum Dynamic Arresting Load in Rope Systems

    Get PDF
    Impact loads to the human body due to falls from height can be mitigated by well-designed and characterized fall protection systems. While energy absorption methods using rope deformation and/or accessory components have previously been evaluated, the ability for simple knots tied in the system to alter impact loads has not been studied in detail. We quantify the effectiveness of various common knots to reduce dynamic loads in typical fall scenarios for which the systems are designed, and interpret this change in the context of rope strength reduction due to the knot. Knots are shown to significantly (45–60 %) reduce the quasistatic strength of rope when compared to a manufactured sewn-eye (40 %). A single exception to this outcome is with the quadruple overhand on a bite (30–35 %). Knots significantly reduce the maximum arresting load due to a dynamic impact event when compared to ropes without knots, providing significantly more energy absorption than the sewn-eye alone. In nearly all rope/knot combinations, the ratio of maximum arrest load (MAL) to breaking strength was lower with the knotted ropes when compared to the sewn-eye terminations. In particular, the quadruple overhand on a bite tied in the Technora–Technora rope resulted in MALs that were only 33 % of the minimum breaking strength (MBS). Ropes with sewn-eye terminations resulted in MALs that were 80 % of the MBS. From the scenarios investigated, the quadruple overhand on a bite provides a favorable reduction in arrest loads with the smallest associated loss of strength.This research was funded by the Department of Homeland Security’s Assistance to Firefighters Grant Program’s Fire Prevention and Safety Grants through Grant # EMW-2008-FP-02504.Ope

    Quantum Monte Carlo calculations of A=9,10A=9,10 nuclei

    Get PDF
    We report on quantum Monte Carlo calculations of the ground and low-lying excited states of A=9,10A=9,10 nuclei using realistic Hamiltonians containing the Argonne v18v_{18} two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an α\alpha-like core and multiple p-shell nucleons, LSLS-coupled to the appropriate (Jπ;T)(J^{\pi};T) quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in 9^9Li, 9^9Be, 10^{10}Be, and 10^{10}B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3+^+ ground state for 10^{10}B, whereas the Argonne v18v_{18} alone or with Urbana IX predicts a 1+^+ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.Comment: 28 pages, 12 tables, 7 figure

    Alpha scattering and capture reactions in the A = 7 system at low energies

    Get PDF
    Differential cross sections for 3^3He-α\alpha scattering were measured in the energy range up to 3 MeV. These data together with other available experimental results for 3^3He +α+ \alpha and 3^3H +α+ \alpha scattering were analyzed in the framework of the optical model using double-folded potentials. The optical potentials obtained were used to calculate the astrophysical S-factors of the capture reactions 3^3He(α,γ)7(\alpha,\gamma)^7Be and 3^3H(α,γ)7(\alpha,\gamma)^7Li, and the branching ratios for the transitions into the two final 7^7Be and 7^7Li bound states, respectively. For 3^3He(α,γ)7(\alpha,\gamma)^7Be excellent agreement between calculated and experimental data is obtained. For 3^3H(α,γ)7(\alpha,\gamma)^7Li a S(0)S(0) value has been found which is a factor of about 1.5 larger than the adopted value. For both capture reactions a similar branching ratio of R=σ(γ1)/σ(γ0)0.43R = \sigma(\gamma_1)/\sigma(\gamma_0) \approx 0.43 has been obtained.Comment: submitted to Phys.Rev.C, 34 pages, figures available from one of the authors, LaTeX with RevTeX, IK-TUW-Preprint 930540

    Correlations in a Many-Body Calculation of 11^{\bf 11}Li

    Full text link
    A many-body calculation of 11^{11}Li is presented where the only input is the well-tested, finite-range {\it D1S} effective interaction of {\it Gogny}. Pairing correlations are included in a constrained Hartree-Fock-Bogolyubov calculation, while long-range collective correlations are introduced using a GCM derived calculation. Correlations are found to play an important role in describing 11^{11}Li. A substantive underlying 9^9Li core of 11^{11}Li is found, which has a different density profile than a free 9^9Li nucleus. This may have significant implications in the use of a three-body framework in studies of 11^{11}Li.Comment: 23 pages typeset in revtex 2.0 with 8 postscript figures in accompanying uuencoded fil
    corecore