284 research outputs found

    Properties of 8^{8}Be and 12^{12}C deduced from the folding--potential model

    Full text link
    The α\alpha--α\alpha differential cross sections are analyzed in the optical model using a double--folded potential. With the knowledge of this potential bound and resonance--state properties of α\alpha--cluster states in 8^{8}Be and 12^{12}C as well as astrophysical S--factors of 4^{4}He(α\alpha,γ\gamma)8^{8}Be and 8^{8}Be(α\alpha,γ\gamma)12^{12}C are calculated. Γγ\Gamma_{\gamma}--widths and B(E2)--values are deduced.Comment: 2 pages LaTeX, 2 figures can be obtained from the author

    Alpha scattering and capture reactions in the A = 7 system at low energies

    Get PDF
    Differential cross sections for 3^3He-α\alpha scattering were measured in the energy range up to 3 MeV. These data together with other available experimental results for 3^3He +α+ \alpha and 3^3H +α+ \alpha scattering were analyzed in the framework of the optical model using double-folded potentials. The optical potentials obtained were used to calculate the astrophysical S-factors of the capture reactions 3^3He(α,γ)7(\alpha,\gamma)^7Be and 3^3H(α,γ)7(\alpha,\gamma)^7Li, and the branching ratios for the transitions into the two final 7^7Be and 7^7Li bound states, respectively. For 3^3He(α,γ)7(\alpha,\gamma)^7Be excellent agreement between calculated and experimental data is obtained. For 3^3H(α,γ)7(\alpha,\gamma)^7Li a S(0)S(0) value has been found which is a factor of about 1.5 larger than the adopted value. For both capture reactions a similar branching ratio of R=σ(γ1)/σ(γ0)0.43R = \sigma(\gamma_1)/\sigma(\gamma_0) \approx 0.43 has been obtained.Comment: submitted to Phys.Rev.C, 34 pages, figures available from one of the authors, LaTeX with RevTeX, IK-TUW-Preprint 930540

    Astrophysical Reaction Rates for 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be From a Direct Model

    Full text link
    The reactions 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be are studied at thermonuclear energies using DWBA calculations. For both reactions, transitions to the ground states and first excited states are investigated. In the case of 10^{10}B(p,α\alpha)7^{7}Be, a resonance at ERes=10E_{Res}=10 keV can be consistently described in the potential model, thereby allowing the extension of the astrophysical SS-factor data to very low energies. Strong interference with a resonance at about ERes=550E_{Res}=550 keV require a Breit-Wigner description of that resonance and the introduction of an interference term for the reaction 10^{10}B(p,α1\alpha_1)7^{7}Be^*. Two isospin T=1T=1 resonances (at ERes1=149E_{Res1}=149 keV and ERes2=619E_{Res2}=619 keV) observed in the 11^{11}B+p reactions necessitate Breit-Wigner resonance and interference terms to fit the data of the 11^{11}B(p,α\alpha)8^{8}Be reaction. SS-factors and thermonuclear reaction rates are given for each reaction. The present calculation is the first consistent parametrization for the transition to the ground states and first excited states at low energies.Comment: 27 pages, 5 Postscript figures, uses RevTex and aps.sty; preprint also available at http://quasar.physik.unibas.ch/ Phys. Rev. C, in pres

    Quantum Monte Carlo calculations of A=9,10A=9,10 nuclei

    Get PDF
    We report on quantum Monte Carlo calculations of the ground and low-lying excited states of A=9,10A=9,10 nuclei using realistic Hamiltonians containing the Argonne v18v_{18} two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an α\alpha-like core and multiple p-shell nucleons, LSLS-coupled to the appropriate (Jπ;T)(J^{\pi};T) quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in 9^9Li, 9^9Be, 10^{10}Be, and 10^{10}B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3+^+ ground state for 10^{10}B, whereas the Argonne v18v_{18} alone or with Urbana IX predicts a 1+^+ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.Comment: 28 pages, 12 tables, 7 figure

    ICTV Virus Taxonomy Profile: Rhabdoviridae.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.Production of this summary, the online chapter, and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA)

    “Nanostandardization” in action: implementing standardization processes in a multidisciplinary nanoparticle-based research and development project

    Get PDF
    Nanomaterials have attracted much interest in the medical field and related applications as their distinct properties in the nano-range enable new and improved diagnosis and therapies. Owing to these properties and their potential interactions with the human body and the environment, the impact of nanomaterials on humans and their potential toxicity have been regarded a very significant issue. Consequently, nanomaterials are the subject of a wide range of cutting-edge research efforts in the medical and related fields to thoroughly probe their potential beneficial utilizations and their more negative effects. We posit that the lack of standardization in the field is a serious shortcoming as it has led to the establishment of methods and results that do not ensure sufficient consistency and thus in our view can possibly result in research outputs that are not as robust as they should be. The main aim of this article is to present how NanoDiaRA, a large FP7 European multidisciplinary project that seeks to investigate and develop nanotechnology-based diagnostic systems, has developed and implemented robust, standardized methods to support research practices involving the engineering and manipulation of nanomaterials. First, to contextualize this research, an overview of the measures defined by different regulatory bodies concerning nano-safety is presented. Although these authorities have been very active in the past several years, many questions remain unanswered in our view. Second, a number of national and international projects that attempted to ensure more reliable exchanges of methods and results are discussed. However, the frequent lack of publication of procedures and protocols in research can often be a hindrance for sharing those good practices. Subsequently, the efforts made through NanoDiaRA to introduce standardized methods and techniques to support the development and utilization of nanomaterials are discussed in depth. A series of semi-structured interviews were conducted with the partners of this project, and the interviews were analyzed thematically to highlight the determined efforts of the researchers to standardize their methods. Finally, some recommendations are made towards the setting up of well-defined methods to support the high-quality work of collaborative nanoparticle-based research and development projects and to enhance standardization processes

    Correlations in a Many-Body Calculation of 11^{\bf 11}Li

    Full text link
    A many-body calculation of 11^{11}Li is presented where the only input is the well-tested, finite-range {\it D1S} effective interaction of {\it Gogny}. Pairing correlations are included in a constrained Hartree-Fock-Bogolyubov calculation, while long-range collective correlations are introduced using a GCM derived calculation. Correlations are found to play an important role in describing 11^{11}Li. A substantive underlying 9^9Li core of 11^{11}Li is found, which has a different density profile than a free 9^9Li nucleus. This may have significant implications in the use of a three-body framework in studies of 11^{11}Li.Comment: 23 pages typeset in revtex 2.0 with 8 postscript figures in accompanying uuencoded fil

    Beyond Implications and Applications: the Story of ‘Safety by Design’

    Get PDF
    Using long-term anthropological observations at the Center for Biological and Environmental Nanotechnology in Houston, Texas, the article demonstrates in detail the creation of new objects, new venues and new modes of veridiction which have reoriented the disciplines of materials chemistry and nanotoxicology. Beginning with the confusion surrounding the meaning of ‘implications’ and ‘applications’ the article explores the creation of new venues (CBEN and its offshoot the International Council on Nanotechnology); it then demonstrates how the demands for a responsible, safe or ethical science were translated into new research and experiment in and through these venues. Finally it shows how ‘safety by design’ emerged as a way to go beyond implications and applications, even as it introduced a whole new array of controversies concerning its viability, validity and legitimacy
    corecore