2,854 research outputs found

    Threshold electronic structure at the oxygen K edge of 3d transition metal oxides: a configuration interaction approach

    Full text link
    It has been generally accepted that the threshold structure observed in the oxygen K edge X-ray absorption spectrum in 3d transition metal oxides represents the electronic structure of the 3d transition metal. There is, however, no consensus about the correct description. We present an interpretation, which includes both ground state hybridization and electron correlation. It is based on a configuration interaction cluster calculation using a MO6 cluster. The oxygen K edge spectrum is calculated by annihilating a ligand hole in the ground state and is compared to calculations representing inverse photoemission experiments in which a 3d transition metal electron is added. Clear differences are observed related to the amount of ligand hole created in the ground state. Two "rules" connected to this are discussed. Comparison with experimental data of some early transition metal compounds is made and shows that this simple cluster approach explains the experimental features quite well.Comment: 10 pages, submitted to Phys. Rev. B, tried to make a better PS file

    A statistical mechanics of an oscillator associative memory with scattered natural frequencies

    Full text link
    Analytic treatment of a non-equilibrium random system with large degrees of freedoms is one of most important problems of physics. However, little research has been done on this problem as far as we know. In this paper, we propose a new mean field theory that can treat a general class of a non-equilibrium random system. We apply the present theory to an analysis for an associative memory with oscillatory elements, which is a well-known typical random system with large degrees of freedoms.Comment: 8 pages, 4 figure

    Acceleration effect of coupled oscillator systems

    Full text link
    We have developed a curved isochron clock (CIC) by modifying the radial isochron clock to provide a clean example of the acceleration (deceleration) effect. By analyzing a two-body system of coupled CICs, we determined that an unbalanced mutual interaction caused by curved isochron sets is the minimum mechanism needed for generating the acceleration (deceleration) effect in coupled oscillator systems. From this we can see that the Sakaguchi and Kuramoto (SK) model which is a class of non-frustrated mean feild model has an acceleration (deceleration) effect mechanism. To study frustrated coupled oscillator systems, we extended the SK model to two oscillator associative memory models, one with symmetric and one with asymmetric dilution of coupling, which also have the minimum mechanism of the acceleration (deceleration) effect. We theoretically found that the {\it Onsager reaction term} (ORT), which is unique to frustrated systems, plays an important role in the acceleration (de! celeration) effect. These two models are ideal for evaluating the effect of the ORT because, with the exception of the ORT, they have the same order parameter equations. We found that the two models have identical macroscopic properties, except for the acceleration effect caused by the ORT. By comparing the results of the two models, we can extract the effect of the ORT from only the rotation speeds of the oscillators.Comment: 35 pages, 10 figure

    KATANA - a charge-sensitive triggering system for the Sπ\piRIT experiment

    Full text link
    KATANA - the Krakow Array for Triggering with Amplitude discrimiNAtion - has been built and used as a trigger and veto detector for the Sπ\piRIT TPC at RIKEN. Its construction allows operating in magnetic field and providing fast response for ionizing particles, giving the approximate forward multiplicity and charge information. Depending on this information, trigger and veto signals are generated. The article presents performance of the detector and details of its construction. A simple phenomenological parametrization of the number of emitted scintillation photons in plastic scintillator is proposed. The effect of the light output deterioration in the plastic scintillator due to the in-beam irradiation is discussed.Comment: 14 pages, 11 figure

    Multi-source and ontology-based retrieval engine for maize mutant phenotypes

    Get PDF
    Model Organism Databases, including the various plant genome databases, collect and enable access to massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc, as well as textual descriptions of many of these entities. While a variety of basic browsing and search capabilities are available to allow researchers to query and peruse the names and attributes of phenotypic data, next-generation search mechanisms that allow querying and ranking of text descriptions are much less common. In addition, the plant community needs an innovative way to leverage the existing links in these databases to search groups of text descriptions simultaneously. Furthermore, though much time and effort have been afforded to the development of plant-related ontologies, the knowledge embedded in these ontologies remains largely unused in available plant search mechanisms. Addressing these issues, we have developed a unique search engine for mutant phenotypes from MaizeGDB. This advanced search mechanism integrates various text description sources in MaizeGDB to aid a user in retrieving desired mutant phenotype information. Currently, descriptions of mutant phenotypes, loci and gene products are utilized collectively for each search, though expansion of the search mechanism to include other sources is straightforward. The retrieval engine, to our knowledge, is the first engine to exploit the content and structure of available domain ontologies, currently the Plant and Gene Ontologies, to expand and enrich retrieval results in major plant genomic databases
    • 

    corecore