We have developed a curved isochron clock (CIC) by modifying the radial
isochron clock to provide a clean example of the acceleration (deceleration)
effect. By analyzing a two-body system of coupled CICs, we determined that an
unbalanced mutual interaction caused by curved isochron sets is the minimum
mechanism needed for generating the acceleration (deceleration) effect in
coupled oscillator systems. From this we can see that the Sakaguchi and
Kuramoto (SK) model which is a class of non-frustrated mean feild model has an
acceleration (deceleration) effect mechanism. To study frustrated coupled
oscillator systems, we extended the SK model to two oscillator associative
memory models, one with symmetric and one with asymmetric dilution of coupling,
which also have the minimum mechanism of the acceleration (deceleration)
effect. We theoretically found that the {\it Onsager reaction term} (ORT),
which is unique to frustrated systems, plays an important role in the
acceleration (de! celeration) effect. These two models are ideal for evaluating
the effect of the ORT because, with the exception of the ORT, they have the
same order parameter equations. We found that the two models have identical
macroscopic properties, except for the acceleration effect caused by the ORT.
By comparing the results of the two models, we can extract the effect of the
ORT from only the rotation speeds of the oscillators.Comment: 35 pages, 10 figure