29 research outputs found

    Nucleon Electric Dipole Moments in High-Scale Supersymmetric Models

    Full text link
    The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CPCP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.Comment: 22 pages, 8 figures, Version accepted for publication in JHE

    A Steady Operation of n-Type Organic Thin-Film Transistors with Cyano-Substituted Distyrylbenzene Derivative

    Get PDF
    A novel n-type organic semiconductor, cyano-substituted distyrylbenzene derivative, 1,4-bis2-[4-(trifluoromethyl)phenyl]acrylonitorilebenzene, was synthesized by Knoevenagel condensation with aldehyde and acetonitrile derivatives. Fabricated thin-film transistors (TFTs) exhibited high electron field-effect mobility of 10-2?10-1 cm2 V-1 s-1, on/off current ratio of 6×105. Hysteresis-free n-type transport characteristics observed in this device promises a steady operation of organic logic circuit. Almost same TFT characteristic was observed even after 1 month storage in ambient condition. The findings indicate that the material has a good resistance to atmospheric oxidants

    A 38 dBi Gain, Low-Loss, Flat Array Antenna for 320 GHz to 400 GHz Enabled by Silicon-On-Insulator Micromachining

    No full text
    Two high-gain flat array antenna designs operatingin the 320 – 400 GHz frequency range are reported in this paper. The two antennas show measured gains of 32.8 dBi and 38 dBi and consist of a 16x16 (256) element array and a 32x32 (1024) element array, respectively, which are fed by a corporate H-tree beamforming network. The measured operation bandwidth for both antennas is 80 GHz (22% fractional bandwidth), and the total measured efficiency is above −2.5 dB and above −3.5 dB forthe two designs in the whole bandwidth. The low measured loss and large bandwidth are enabled by optimizing the designs to the process requirements of the SOI micromachining technology used in this work. The total height of the antennas is 1.1mm (1.2 at the center frequency), with sizes of 15mm x 18mm and 27mm x 30mm for both arrays. The antennas are designed to be directly mounted onto a standard WM-570 waveguide flange.The design, fabrication, and measurements of eight prototypes are discussed in this paper and the performance of the antennas compared to the simulated data, as well as manufacturability and fabrication repeatability are reported in detail.QC 20200523</p

    Colored noise induces synchronization of limit cycle oscillators

    No full text
    Driven by various kinds of noise, ensembles of limit cycle oscillators can synchronize. In this letter, we propose a general formulation of synchronization of the oscillator ensembles driven by common colored noise with an arbitrary power spectrum. To explore statistical properties of such colored noise-induced synchronization, we derive the stationary distribution of the phase difference between two oscillators in the ensemble. This analytical result theoretically predicts various synchronized and clustered states induced by colored noise and also clarifies that these phenomena have a different synchronization mechanism from the case of white noise
    corecore