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Synopsis

The prediction of post peak behavior of compressive concrete is significant especially for ductility based on

seismic design of reinforced concrete members. The present paper describes numerical modeling of post peak

behavior of compressive concrete as a strain softening material with constitutive law based on incremental elasto

plastic theory formulated in a strain space. A series of numerical parametric studies have been conducted for the

existing experimental results of compressive concrete including useful post peak behavior test.
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1. Introduction

It is significant to predict plastic deformation capacity of reinforced concrete members, i.e. how compressive

concrete can deform and also how it can sustain further compressive stress. Post peak behavior of compressive

concrete is deeply related to existence of confinement stress due to lateral reinforcement.

As illustrated in Fig.I, typical stress strain relationship under uniaxial compression, unconfined concrete

provides steep descending branch. However, the slope of that branch can be improved milder shown as the dotted

line, once effective lateral confinement is provided so that volumetric expansion is restricted by lateral

reinforcement such as hoops or ties. Appropriate numerical modeling for such phenomena can be effective to

predict rigorously the post peak behavior of reinforced

concrete members.

The present study investigates nonlinear constitutive

model based on incremental plastic theory with a loading

function defined in strain space, proposed by Mizuno and

The purpose of the study is to verify effectiveness of

the model through numerical finite element simulations

for several existing experimental results with strain

softening behavior.
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2. Existing Experiments on Strain Softening of Compressive Concrete

There are many experimental studies on the strain softening behavior of compressive concrete with various

lateral pressures, those inform us their stress strain relations and also failure envelops in various combination of

stress states. Form the viewpoint of existence of lateral pressure, the two of the results were adopted as

examples for the numerical simulations. One is the uniaxial compressive test without lateral pressure by

Barnard'), and the other is the tri-axial compressive test by Hatanaka", et al.

First, Barnard's specimen is shown as Figure 2, and its dimensions are listed in Table 1. Figure 3 is an

example of the obtained stress-strain relations.

Table I Dimensions of specimens

height II.5in. (29.2Icm)

diameter(edge) 4.5in. (11.43cm)

ditto.(center) 2.5in. ( 6.35cm)

gauge length 4.0in. (l0.16cm)

30 ,---------,-------,-----,---------,------,

100008000600040002000
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Fig. 2 Specimens') Fig. 3 Stress-strain relations')

Next, Hatanaka's specimen and test setup is shown as Fig. 4, in which biaxial lateral pressure was given

passively dependent on the lateral dilatation of the concrete specimen. Testing parameters and an example of the

results are shown in Table 2 and Fig. 5, respectively.

Table 2 Outline of experimeneJ

water-cement ratio height/width Lateral confining stress a L

W/C H/D (MPa)

0.45

0.55

0.70

1.0

1.3
2.0

o
0.1

0.3

0.6*1

1.2*2

*1 :anly far H/D=l

*2:anly far W/C=0.55 ofH/D=1

average strain rate of2 Xl 0·3/min
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Fig. 4 Specinlen and loading setup3) Fig. 5 Stress-strain relations3
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3. Elasto-Plastic Model for Strain-Softening

The determinations of loading conditions defined in stress space are given in Eqs.(1)-(3). Figures 6 and 7

show the conceptual two-dimensional views of the loading conditions of stress and strain spaces, respectively.

When strain hardening and strain softening condition in the stress space are to be defmed, it should be difficult

to detennine the condition of loading, neutral loading or unloading, because the detennination equations, such

as Eqs.(2) and (3), naturally involve multiple conditions.

df > 0 : Loading (hardening)

df < 0 : Loading (softening), Unloading

df = 0 : Loading (perfect plasticity), Neutral loading

Loading function :/--,
"

\
I
J

Loading function: F--,
.....-..... "'...... ,~

~~ ~..~..
~..

dF <{}':

Fig. 6 Loading condition of stress space Fig. 7 Loading condition of strain space

The corresponding determination equations in strain space are also given in Eqs.(4)-(6). It can be found out

that a consistent detennination of the loading conditions is described without the above difficulty. Moreover, a

comprehensive comparison of elasto plastic incremental theory between in stress and strain spaces is illustrated

in Table 3.
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dF > 0 : Loading (hardening, softening, perfect plasticity)

dF < 0 : Unloading

dF = 0 : Neutral loading

Table 3 Comparison between stress and strain space formulation

(4)

(5)

(6)

Loading
function

Flow rule

Stress-strain
relationsh ip

Stress space

Drucker's postu late

Compatibility condition

Strain space

I1'yushin's postulate

Compatibility condition

dF= of dc =0
oCi) IJ

Figure 8 shows the loading function in three dimensional principal strain space. Equations (7) and (8)" are

loading function:F and plastic potential function:G, respectively.

Fig.8 Loading function in a principal strain space

(-- )3 [ [p J'" ][(AT + a)3 I (-- 'rn- --JF= All +a - 27+/" AII(~a 1

27
-"3 AI, +a)BJ2 +CJ3 =0

[ [ j"I][(--)3 ~-- 3 P AI + a 1 -- ---
G=(AI I +a) - 27 +77 2 a I -~(AII +a}BJ2 +CJ

3
=0

All + a 27 J
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where 11' J 2 and J 3 = the first invariant of strain tensor and the second and third invariants of the

deviatoric strain tensors, respectively; Pa = the atmospheric pressure; In = the shape parameter; a = a

magnitude of movement to the tensile direction along the hydrostatic pressure axis; and fp = the loading

parameter. Moreover, A =3K, B=4)12 and C=8)13, where K and)1 are bulk and shear modulus,

respectively.

Substituting by those into incremental stress-strain relation, the elasto plastic constitutive matrix in finite

element formulation can be formed.

4. Numerical simulations

4.1 Preliminary

Compressive strength of concrete and also lateral confinement stress intensity are fundamentals for the

behavior of the compressive concrete, so that their influences were examined preliminary.

First, the obtained results with the various compressive strengths are shown in Fig. 9. It could be found that

the slope of the falling branch becomes steep as the given compressive strength is high, while the branches

came together beyond the compressive strain of 1OOOO~l at last.

ext, Fig. 10 shows the results with the various confinements, In which the vertical axis indicates a

nonnalized compressive stress by the cOITesponding compressive strength. From the results, the confinement

intensity could considerably improve of the post-peak behavior, while it could not affect the peak stress.
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Fig. 9 Stress-strain relations with

various compressive strengths

Fig. 10 Stress-strain relations with

various confinement stresses

4.2 Material parameters

Material parameters of the material nonlinear model" as described in the previous chapter 3 are listed in

Table 4. It is noted that,[p relevant to '7 1 is the most essential to control the strain-softening behavior in the

model. For example, the three of the parameters to be examined were 77 1 , JirJppeak and Y2 , those are related

closely to a uniaxial compression state. Figures II. 12 and 13 are the results varying each of the corresponding

three parameters, where each vertical axis denotes the normalized stress as same as that in Fig. 10. From these

figures, it could be recognized in particular that the peak stress increased as 77 1 increases. as well as the post­

peak branch arises as rrJl'l'eak and Y2 increases.
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Table 4 Material parameters of load function

'7 1 :The peak value of parameter fa 165

m :The shape parameter 0
:A magnitude of movement to the tensile

0.31/ ca
direction along the hydrostatic pressure

p :The value obtained by using least
0.099

square method
I :The value obtained by using least

0.867
square method

o :The plastic work corresponding to the
0.345W

ppeak non lateral pressure
:The value obtained by using least

0.1021Yl square method
:The value obtained by using least

2.41Y?
- square method
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Fig.14 Stress-strain relations according

to the parameter values in Table 4
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4.3 Application to existing results

The numerical simulations based on the

material nonlinear modeling were conducted on two

of the existing experimental evidences as introduced

in the chapter2. One was under uniaxial

compression only, and the other was under the

compression with lateral confinement pressure,

so-called triaxial compression.

First, the results for the former under uniaxial

compression are shown in Fig.14, in which the

values of the material parameters in Table 4 were

used. Because the parameters were adjusted for

another concrete material from Ref.2), there were

naturally some differences between the

experimental and numerical curves. Thus, another

simulation have been carried out, modifYing the set

of the parameters as 771 = 155, FVppeak=O.02 and

Y2 = 2.41. As the modified results, better

agreements could be obtained as shown in Fig.15,

although slight differences on the peak stresses were

hold.

0.0 0

3)
0', (MPa) Exp. Numer.

8000

o

Fig.15 Stress-strain relations using

modified parameter values

o

10

30

o

pressure.

Consequently, the numerical modeling discussed

here could be effective to evaluate the post-peak

behavior of compressive concrete with lateral

Next, the results for the latter under triaxial

compression are shown in Fig.16. Comparing the

experimental and numerical results, a satisfactory

agreement of the peak stress point could be obtained,

although a slight leftward sift of the point appeared

for the case with the highest lateral pressure.

Furthermore, as to the post-peak branch, the numerical

results could trace well along the corresponding

experimental ones, except for the case of no lateral

confinement stress. o 5000 10000 150000
5train (p)

20000

Fig.16 stress-strain relations with various

lateral confinement stresses
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5. Concluding Remarks

from the parametric studies on compressive concrete as a strain softening material, the followings are

concluded.

(I) Essential material parameters for the load function were obtained.

(2) Satisfactory solutions have been obtained for the existing experimental results.

(3) Confinement effect can be also evaluated including post-peak region.
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