1,442 research outputs found
Order parameter expansion study of synchronous firing induced by quenched noise in the active rotator model
We use a recently developed order parameter expansion method to study the
transition to synchronous firing occuring in a system of coupled active
rotators under the exclusive presence of quenched noise. The method predicts
correctly the existence of a transition from a rest state to a regime of
synchronous firing and another transition out of it as the intensity of the
quenched noise increases and leads to analytical expressions for the critical
noise intensities in the large coupling regime. It also predicts the order of
the transitions for different probability distribution functions of the
quenched variables. We use numerical simulations and finite size scaling theory
to estimate the critical exponents of the transitions and found values which
are consistent with those reported in other scalar systems in the exclusive
presence of additive static disorder
Synchronization Transition in the Kuramoto Model with Colored Noise
We present a linear stability analysis of the incoherent state in a system of
globally coupled, identical phase oscillators subject to colored noise. In that
we succeed to bridge the extreme time scales between the formerly studied and
analytically solvable cases of white noise and quenched random frequencies.Comment: 4 pages, 2 figure
Oscillatory phase transition and pulse propagation in noisy integrate-and-fire neurons
We study non-locally coupled noisy integrate-and-fire neurons with the
Fokker-Planck equation. A propagating pulse state and a wavy state appear as a
phase transition from an asynchronous state. We also find a solution in which
traveling pulses are emitted periodically from a pacemaker region.Comment: 9 pages, 4 figure
Globally clustered chimera states in delay--coupled populations
We have identified the existence of globally clustered chimera states in
delay coupled oscillator populations and find that these states can breathe
periodically, aperiodically and become unstable depending upon the value of
coupling delay. We also find that the coupling delay induces frequency
suppression in the desynchronized group. We provide numerical evidence and
theoretical explanations for the above results and discuss possible
applications of the observed phenomena.Comment: Accepted in Phys. Rev. E as a Rapid Communicatio
To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model
The entrainment transition of coupled random frequency oscillators presents a
long-standing problem in nonlinear physics. The onset of entrainment in
populations of large but finite size exhibits strong sensitivity to
fluctuations in the oscillator density at the synchronizing frequency. This is
the source for the unusual values assumed by the correlation size exponent
. Locally coupled oscillators on a -dimensional lattice exhibit two
types of frequency entrainment: symmetry-breaking at , and aggregation
of compact synchronized domains in three and four dimensions. Various critical
properties of the transition are well captured by finite-size scaling relations
with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to
Statphys2
Synchronizability determined by coupling strengths and topology on Complex Networks
We investigate in depth the synchronization of coupled oscillators on top of
complex networks with different degrees of heterogeneity within the context of
the Kuramoto model. In a previous paper [Phys. Rev. Lett. 98, 034101 (2007)],
we unveiled how for fixed coupling strengths local patterns of synchronization
emerge differently in homogeneous and heterogeneous complex networks. Here, we
provide more evidence on this phenomenon extending the previous work to
networks that interpolate between homogeneous and heterogeneous topologies. We
also present new details on the path towards synchronization for the evolution
of clustering in the synchronized patterns. Finally, we investigate the
synchronization of networks with modular structure and conclude that, in these
cases, local synchronization is first attained at the most internal level of
organization of modules, progressively evolving to the outer levels as the
coupling constant is increased. The present work introduces new parameters that
are proved to be useful for the characterization of synchronization phenomena
in complex networks.Comment: 11 pages, 10 figures and 1 table. APS forma
Instability of synchronized motion in nonlocally coupled neural oscillators
We study nonlocally coupled Hodgkin-Huxley equations with excitatory and
inhibitory synaptic coupling. We investigate the linear stability of the
synchronized solution, and find numerically various nonuniform oscillatory
states such as chimera states, wavy states, clustering states, and
spatiotemporal chaos as a result of the instability.Comment: 8 pages, 9 figure
Collective synchronization in spatially extended systems of coupled oscillators with random frequencies
We study collective behavior of locally coupled limit-cycle oscillators with
random intrinsic frequencies, spatially extended over -dimensional
hypercubic lattices. Phase synchronization as well as frequency entrainment are
explored analytically in the linear (strong-coupling) regime and numerically in
the nonlinear (weak-coupling) regime. Our analysis shows that the oscillator
phases are always desynchronized up to , which implies the lower critical
dimension for phase synchronization. On the other hand, the
oscillators behave collectively in frequency (phase velocity) even in three
dimensions (), indicating that the lower critical dimension for frequency
entrainment is . Nonlinear effects due to periodic nature of
limit-cycle oscillators are found to become significant in the weak-coupling
regime: So-called {\em runaway oscillators} destroy the synchronized (ordered)
phase and there emerges a fully random (disordered) phase. Critical behavior
near the synchronization transition into the fully random phase is unveiled via
numerical investigation. Collective behavior of globally-coupled oscillators is
also examined and compared with that of locally coupled oscillators.Comment: 18 pages, 18 figure
Phaselocked patterns and amplitude death in a ring of delay coupled limit cycle oscillators
We study the existence and stability of phaselocked patterns and amplitude
death states in a closed chain of delay coupled identical limit cycle
oscillators that are near a supercritical Hopf bifurcation. The coupling is
limited to nearest neighbors and is linear. We analyze a model set of discrete
dynamical equations using the method of plane waves. The resultant dispersion
relation, which is valid for any arbitrary number of oscillators, displays
important differences from similar relations obtained from continuum models. We
discuss the general characteristics of the equilibrium states including their
dependencies on various system parameters. We next carry out a detailed linear
stability investigation of these states in order to delineate their actual
existence regions and to determine their parametric dependence on time delay.
Time delay is found to expand the range of possible phaselocked patterns and to
contribute favorably toward their stability. The amplitude death state is
studied in the parameter space of time delay and coupling strength. It is shown
that death island regions can exist for any number of oscillators N in the
presence of finite time delay. A particularly interesting result is that the
size of an island is independent of N when N is even but is a decreasing
function of N when N is odd.Comment: 23 pages, 12 figures (3 of the figures in PNG format, separately from
TeX); minor additions; typos correcte
On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain
The continuous and discrete symmetries of the Kuramoto-Sivashinsky system
restricted to a spatially periodic domain play a prominent role in shaping the
invariant sets of its chaotic dynamics. The continuous spatial translation
symmetry leads to relative equilibrium (traveling wave) and relative periodic
orbit (modulated traveling wave) solutions. The discrete symmetries lead to
existence of equilibrium and periodic orbit solutions, induce decomposition of
state space into invariant subspaces, and enforce certain structurally stable
heteroclinic connections between equilibria. We show, on the example of a
particular small-cell Kuramoto-Sivashinsky system, how the geometry of its
dynamical state space is organized by a rigid `cage' built by heteroclinic
connections between equilibria, and demonstrate the preponderance of unstable
relative periodic orbits and their likely role as the skeleton underpinning
spatiotemporal turbulence in systems with continuous symmetries. We also offer
novel visualizations of the high-dimensional Kuramoto-Sivashinsky state space
flow through projections onto low-dimensional, PDE representation independent,
dynamically invariant intrinsic coordinate frames, as well as in terms of the
physical, symmetry invariant energy transfer rates.Comment: 31 pages, 17 figures; added references, corrected typos. Due to file
size restrictions some figures in this preprint are of low quality. A high
quality copy may be obtained from
http://www.cns.gatech.edu/~predrag/papers/preprints.html#rp
- …