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Order parameter expansion and finite-size scaling study of coherent dynamics induced
by quenched noise in the active rotator model
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We use a recently developed order parameter expansion method to study the transition to synchronous firing
occurring in a system of coupled active rotators under the exclusive presence of quenched noise. The method
predicts correctly the existence of a transition from a rest state to a regime of synchronous firing and another
transition out of it as the intensity of the quenched noise increases and leads to analytical expressions for the
critical noise intensities in the large coupling regime. It also predicts the order of the transitions for different
probability distribution functions of the quenched variables. Using numerical simulations and finite-size scal-
ing theory to estimate the critical exponents of the transitions, we found values which are consistent with those
reported in other scalar systems in the exclusive presence of additive static disorder.
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I. INTRODUCTION

In some cases, a dynamical system with many variables
depends on a set of parameters which, although fixed in time,
are randomly distributed according to a given probability
distribution. The outcome of the system, although determin-
istic, depends on the actual realization of the set of param-
eters. The influence of this so-called, depending on the con-
text: quenched noise, static disorder, heterogeneity,
variability, diversity, impurities, etc. has been the subject of
many investigations. In the last years, some emphasis has
been given to identifying those situations in which the pres-
ence of the quenched noise induces some sort of macro-
scopic ordering, such as phase transitions [1] and patterns
[2]; improves the global response to an external forcing [3]
or enhances synchrony of firing units [4].

Due to the complexity of the problem, analytical treat-
ments are usually very difficult to be carried out in full detail
and most results rely on extensive numerical simulations.
However, a recently introduced technique named “order pa-
rameter expansion” [5-10] offers a simple approximate way
of analyzing the effect of the random quenched terms in the
dynamical equations. The approximation scheme allows the
reduction in the large number of coupled differential equa-
tions for the microscopic variables to just a few effective
equations for the relevant macroscopic dynamical variables:
the mean values and dispersions from the mean.

Oscillatory behavior is ubiquitous in many systems. The
study of synchronization among coupled oscillatory systems
is of interest in a variety of research fields, ranging from
climatology [11] to electronics [12] and from neurology [13]
to physiology [14]. It is the purpose of this paper to study the
active rotator model [15-17] under the influence of static
disorder in the natural frequencies. Previous work [4,18-20]
has shown the somewhat paradoxical result that intermediate
levels of disorder at the microscopic level induce macro-
scopic order which manifests itself in a synchronous, or co-
herent, firing of the units. Very sophisticated treatments of
this model do exist leading to analytical solutions in some
particular cases [21-23] (and we will refer to them later in
the paper), but they are usually very difficult to carry out in
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full detail. A particular simple analysis was developed in [4],
where the authors used an expansion of the dynamical equa-
tions of the model up to first order in the deviation of the
quenched variables from their mean value and identified a
self-consistency equation which had to be solved numeri-
cally. The order parameter expansion used in the present pa-
per expands consistently this analysis up to terms of second
order, thus reaching a higher accuracy. The resulting closed
system of three differential equations reproduces the order-
ing abilities of quenched noise in this system and, further-
more, predicts a sharp transition back into the disordered
state where no macroscopic order is observed. The presented
method gives an intuition about the different regimes the
system is capable of and how the phase borders depend on
the system parameters. With its use the change of the
nullclines due to diversity in the Fitzhugh-Nagumo model
[24] and phase transitions induced by diversity [10] have
been investigated. To complete the study we have done ex-
tensive numerical calculations of the full dynamical system
in the vicinity of the transitions. The order of the transitions
has been determined and, furthermore, we present a detailed
finite-size scaling analysis of the critical exponents.

The paper is organized as follows. First, in Sec. I, we will
define the active rotator model and summarize its main prop-
erties. Macroscopic observables that describe the collective
behavior are introduced. Then, in Sec. III, the approximation
method is applied and conclusions about steady states are
drawn. In Sec. IV we present numerical results that support
the previous findings and use the theory of finite-size scaling
to determine some of the critical exponents characterizing
the transitions.

II. MODEL

Let us consider a system of globally coupled active rota-
tors [15], defined by a set of angular variables ¢,(z),i
=1,...,N which evolve according to the dynamical equa-
tions:
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B =0, -sinl 0]+ = sl - 0] (1)
j=1

where C is the coupling constant. The so-called natural fre-
quencies w; are quenched noise, i.e., random variables inde-
pendently drawn from a probability distribution g(w) with
mean {(w). The variance of the distribution, ¢, is a measure
of the dispersion of natural frequencies among the oscillators
and measures the degree of intrinsic disorder. We will refer
to o as the “diversity.”
For uncoupled units, C=0, a value of |wi| > results in a
rotating behavior for ¢;(¢). The actual period of rotation is
27_ and the direction of rotation depends on the sign of w;:

Voi-1
clockwise if w;<0 and anticlockwise otherwise. If |w;| <1,
then unit 7 is in an excitatory regime. In this case there are
two fixed points (one stable and the other unstable) located at
the two solutions of ¢ =arcsin(w;). When a perturbation is
such that it makes variable ¢, to cross over the unstable fixed
point, the subsequent dynamics returns to rest again in the
stable fixed point through a full turn of ¢; on the unit circle
(a “spike” or a “pulse”). This is the typical behavior of an
excitable system [25].

When the coupling is active, C >0, the dynamics of each
unit is influenced by the others which act, effectively, as a
perturbation. As a result, individual spikes can be generated.
Those spikes can be independent of each other or, alterna-
tively, the units might spike with some degree of synchrony.
It is of interest to characterize the global behavior of the
system in order to identify the region of parameter space for
which synchronized spiking occurs. To this end one usually
defines a complex variable which represents the center of
mass of all rotators [26]:

N

1
p(t)e’qj(t) _ ]TIE ez(éi(t) = <el¢j(l)>‘ (2)
j=1

Henceforth, (--+) denotes an average over the N units. The
Kuramoto order parameter p=p(z), where the overline de-
notes an average with respect to time, differentiates between
fully synchronized [p=1, i.e., ¢{(t)=¢;(1), Vi,j] and desyn-
chronized oscillators (p=0). When p is close to 1, one still
needs to distinguish the rest state where all oscillators are
equally constant in time from the coherent firing regime
where the units are oscillating synchronously. Among other
possible measures, one can use the order parameter intro-
duced by Shinomoto and Kuramoto [18] as ¢
=|p(t)e™ = p(r)e™ |, which is different from zero only in
the case of synchronous firing. Alternatively, and this is the
approach followed in this paper, one can measure the aver-
age angular speed of the time evolution of the global phase
V(7). In the rest state, W(z) is time independent and the an-
gular speed is zero, whereas in the coherent firing regime,
W(r) increases with time and the angular speed adopts a non-
zero value.

It has been shown that the system of coupled active rota-
tors displays a disorder-induced transition from the global
rest state to synchronized firing [4,18,19]. Higher levels of
disorder lead the system again into unsynchronized firing.
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The disorder can be produced by the existence of diversity
among the natural frequencies [20] (as it is the case of inter-
est in this paper), by the presence of noise terms in the dy-
namical equations, and by the existence of competitive inter-
actions, heterogeneity in the network of connectivities [27]
or any other origin. A general theory to explain this transition
has been developed in [4], while an exact treatment in the
case of disorder in the natural frequencies has been carried
out in [22,23]. In the next section we present a simplified
treatment of this problem in terms of the order parameter
expansion. This allows us to derive equations for the macro-
scopic variables as a perturbative expansion, assuming small
fluctuations. This simple approach is able to predict the main
features observed in the numerical simulations. Furthermore,
it provides an analytic expression for the critical noise inten-
sities in the large coupling limit.

III. METHOD
A. Derivation of the dynamical equations

As stated in the introduction, our goal is to use the order
parameter expansion method to obtain evolution equations
for the global phase W(z), defined in Eq. (2), and its fluctua-
tions, defined as suitable moments of the variables ¢€(z)
=¢,(t)-W(r). As it will turn out the dynamics of the global
phase at lowest order coincide with the local dynamics.
When coupling the units to a mean-field the dynamics of the
global phase become coupled to that of the fluctuations
Q,(1) ~<ej(t)2> and the weighted fluctuations W(#)=(e;(¢) 5),
where we write §;=w;—(w) for the deviation of the local
natural frequency from the mean. The fluctuations (), and W
have to be taken into account at the same order to obtain a
consistent set of equations. The precise derivation of the ap-
proximate dynamical system goes as follows.

We first notice that according to the definition of ¢ and
using Eq. (2), a simple calculation leads to (e'%V)
=™ W(cos €(t)+1 sin q(t)):p(t)e’w(t). Since p() has to be a
real number we find that (sin €;(r))=0 and p(1)=(cos €(1)).
As a consequence we can rewrite Eq. (1) as

$i(1) = w; = sin( (1)) — C{cos €(1))sin €(r). 3)
If we now take the time derivative of Eq. (2) one can
identify real and imaginary parts and find the identity
W(1)(cos €(1))=(¢;(1)cos €(t)). There we substitute ¢b;(t) as
given by Eq. (3) and obtain an equation for W(r) as a func-
tion of (cos €;), {(cos? €;), (sin €; cos €;), and (& cos €;). If
we now expand these four terms up to second order around
€;=0 we are left with

¥ = (w) — Qy(1)sin V(7). 4)

Here we have identified the dynamical variable Q,(r)=1
—(ef-(t))/Z. We determine its dynamics by writing Q,(z)
=—(&(1)€;(1)), using &(1)= (1) =W (1), and replacing ¢, from
Eq. (3) and V¥ from Eq. (4). Expanding the resulting expres-
sion up to second order around €;=0 we arrive at
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Q= — W(1) + 2[cos ¥ (1) + CI[1 = Qs(1)], (5)

where the third dynamical variable W(7)=(e;(¢)5;) allows us
to close the set of equations. It obeys dynamics given by

W(t):(éj(t) 8;) and is found in the same way as above:

W =02 —[cos (1) + C]W(r), (6)

where we made use of the definition (5?)=02.

The set of Eq. (4) for the global phase and Egs. (5) and
(6) for the fluctuations is the result of the order parameter
expansion applied to the oscillator ensemble defined by Eq.
(1) and is the basis for further analysis. The Shinomoto-
Kuramoto order parameter could be approximated by carry-
ing out the appropriate time averages of

L= Q)™ - Q)™ 0] + O(( D)™

but, as stated above, we will use a different order parameter.
The errors are of the order O((5/€}")) ,n+m=3 or higher. As
a consequence, Eq. (4) is more accurate than the correspond-
ing equation W=(w)/p—sin ‘I’+0((5]2»)) obtained in [4].
Note that this last equation simply identifies p as the thresh-
old for excitability. In our case, the full stability analysis is
more involved as {),(¢) is considered to be a variable of time.
In the next subsection we will determine the fixed points of
the system (4)—(6) and their stability.

B. Phase diagram

The fixed points (V*,Q5,W*) of the system of Egs.
(4)—(6) must satisfy

(w) = Q3 sin ¥, (7)
)
Q=1-—I 8
2 2(cos ¥* + C)? ®
&
W= —-—. 9
cos U+ C ©)

Graphically, the coordinates W™ of the fixed points corre-
spond to the intersections of the function Q5(¥*)sin(¥*)
with the horizontal line representing (w). As shown in Fig. 1,
it turns out that, for fixed (w) and C the amplitude of the
oscillatory rhs of Eq. (7) is a function that first decreases
continuously with o until eventually reaching its lowest
value to then increase continuously for larger o (see Fig. 2).
Therefore there exist two limiting values of the diversity o,
and o such that two solutions are found whenever o< o or
o> o.. A linear stability analysis shows that in this case the
global phase behaves as an excitable system, with one of the
solutions corresponding to a stable and the other to an un-
stable fixed point. If, otherwise, o € (0., o) there will be no
fixed points and the global phase will rotate in time, signal-
ing the existence of coherence firing in the global system.
The linear stability analysis also shows that the stable and
unstable fixed points, found in the low and high noise limits,
collide and disappear when the maximum of the right-hand
side (rhs) of Eq. (7) coincides with (w). This is a so-called
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FIG. 1. Graphical analysis of the solutions of the equation (w)
=(1-02/2(cos ¥*+C)?)sin(V*) = Q3(V*)sin(¥*) for C=4.0 and
0=0.5,3.0,7.5 (dashed, dotted, and dash dotted). The horizontal
line marks (w)=0.97. Note that the line corresponding to o=3.0
does not cut the horizontal line, thus no stable steady state exists for
this value of o, whereas two solutions exist for the other values of
o.

saddle-node on an invariant cycle (SNIC) bifurcation [28].
The steady states in the macroscopic Egs. (4)—(6) at high and
at low values of o are caused by different underlying micro-
scopic dynamics: whereas individual rotators are moving at
high levels of noise, they are all at rest in the low noise limit.

The phase diagram identifying regions of synchronized
global firing can be obtained from the existence of solutions
to Egs. (7)—(9) as discussed above. In general, this has to be
performed numerically, but to an arbitrary degree of accu-
racy. Results for the case that the mean of natural frequencies
is {(w)=0.97 are shown in Fig. 3. It can be observed that a
minimal coupling intensity is needed to introduce a possible
state of coherent firing. In the large coupling limit, C>1, it
is possible to derive analytical expressions for o, and o.
Neglecting cos W™ in the denominator of the right-hand side
of Eq. (8), the necessary condition [{w)| =5 leads to

R
o.=C\2V1 —(w), (10)
~ 15} .
)
K=
*
Cl', 1 |
g
£
2
= 0.5 R
=
o0
[
=
0 Il Il Il
0 2 4 6 8

Diversity, 6

FIG. 2. Maximum of the rhs of Eq. (7) for C=4.0 as continuous
line and {(w) marked as dashed line. When the curve of the maxi-
mum lies above the dashed line a fixed point solution exists. Oth-
erwise not.
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FIG. 3. Phase diagram: fixed points of Egs. (7)—(9) (for (w)
=0.97) exist below and above the two continuous lines (gray re-
gion). In between no fixed points exist and the global phase rotates,
i.e., the individual rotators oscillate in a coherent manner. Approxi-
mate values of the critical diversity for C>1 according to Egs. (10)
and (11) are plotted with dashed lines. Symbols show values taken
from numerical simulations of the set of Eq. (1) with a Gaussian
distribution. The dotted line marks the approximate solution of the
critical diversity given in [23].

o = C\2\1 +(w). (11)

In this approximation, the width of the interval (o,,0.),
where the system fires synchronously, grows linearly with C.
This means that an intermediate level of coupling is needed
to support a synchronized firing state. The dependence on
(w) of the second transition is rather small for {w)=1. The
interval collapses for (w)=0. The resulting approximate
phase diagram for large coupling values is marked with
dashed lines in Fig. 3. We conclude that the order parameter
expansion correctly identifies the diversity induced transi-
tions that occur at the critical points o, and .. As shown in
Fig. 3, it also allows the determination of the value of o,
with a reasonable accuracy, although o is grossly overesti-
mated, when compared against the numerical simulations
(see Sec. IV) or the analytical treatment of [23] using a
Gaussian distribution g(w;) for the natural frequencies. As an
example, for (w)=0.95 and coupling C=4, the numerical so-
lution of Egs. (7)—(9) yields a critical noise intensity of o,
=1.269, whereas the approximate solution, Eq. (10) yields
o.=1.265. This is to be compared with the value o.=1.272
obtained from the exact treatment given in [23] based on
recent developments by Ott and Antonsen [21,22].

From the microscopic point of view, one could argue that
the destruction of coherence at high noise values is due to the
coexistence of individual oscillators rotating at opposite di-
rections, as they would certainly be present for many general
distributions g(w) of natural frequencies. However, the only
requirements we have made on the distribution g(w) is that
its first and second moments are well defined. Therefore,
according to our treatment, the existence of elements rotating
in both directions cannot be the only responsible for the tran-
sitions. To analyze this issue, we have considered that the
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FIG. 4. Phase diagram for the exponential distribution of natural
frequencies which satisfies o=(w). As in Fig. 3, fixed points of Egs.
(7)-(9) exist below and above the two continuous lines (gray re-
gion). Approximate values of the critical diversity for C>1 accord-
ing to Egs. (12) and (13) are plotted with dashed lines. Symbols
show numerical simulations with exponential distribution.

individual frequencies were drawn from an exponential dis-
tribution g(w;)=e~*"“/{w), for w;=0 such that all natural
frequencies w; would be positive. In this case the variance o>
and the mean (w) are not independent of each other, as they
satisfy o=(w) and there is only one parameter in the distri-
bution. Replacing o=(w) in Egs. (10) and (11) we obtain

g,=C(NC*+2-0), (12)
o.=C(NC*+2+0), (13)

as the limits of the zone for which synchronized firing exists.
The phase diagram for this exponential distribution has been
plotted in Fig. 4. As it is a special case of the general distri-
butions considered above, the qualitative image is the same:
an intermediate value for the intensity of the quenched noise
is required to induce a state of coherent firing, while a too
high intensity destroys it. As in the case of Gaussian distri-
bution of natural frequencies, the qualitative picture agrees
with the exact treatment and the numerical simulations. The
lower critical point o, is also given with a reasonably degree
of accuracy, but the upper critical point is overestimated,
again compared with the numerical simulations or the ana-
lytical treatment of [23].

To end this section, we note that, for a general distribution
g(w), a very large diversity satisfying o> o, will never in-
duce another SNIC bifurcation into a new state of coherent
firing. With this observation one would expect that distribu-
tions g(w) with infinite variance, as is the case for a Lorent-
zian distribution, would never show a regime of synchro-
nized firing. This is in agreement with the detailed theory of
[23] only for {(w) < 1. In the case {w)> 1, however, the com-
plete theory predicts that oscillators rotate coherently for low
diversity and incoherently for high diversity.

In summary, and in agreement with more involved treat-
ments of the coupled active rotator model, the order param-
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eter expansion scheme predicts a transition into coherent fir-
ing and out of it, induced by the exclusive presence of
quenched noise. The only assumptions we made on the fre-
quency distribution to derive the results are the existence of
well defined first and second moments. In the following sec-
tion we present numerical simulations of the full system, Eq.

(1).

IV. NUMERICAL SIMULATIONS

In the previous section we demonstrated that for very low
and very high values of o the system (4)—(6) is in a steady

state characterized by TzszWzO, whereas for intermedi-
ate values the global phase W is not constant. This repro-
duces, in a simple manner, the prediction of the existence of
this intermediate level of disorder for which the system fires
synchronously and shows the validity of the order parameter
expansion applied to this model. In this section, we will
present results of numerical simulations of the full system of
coupled Eq. (1). Our goal is to show that the transitions
occurring at o, and o, show all the features of true phase
transitions and can be characterized, besides by the vanishing
of the order parameter, by a divergence of the fluctuations.
The divergence, as usual, is smeared out by finite-size effects
and it is possible to carry out an analysis in terms of finite-
size scaling with the number N of rotators [29]. Furthermore
we want to compare the macroscopic behavior of systems
with symmetrically distributed natural frequencies and sys-
tems with only positive frequencies. Namely, Gaussian dis-
tributions are used in the first case and exponential distribu-
tions in the second.

As order parameter, m, quantifying the collective firing
regime we have chosen the time average of the slope of the

global phase m=". This is expected to vanish for small, o
<0,, and large o> 0. disorder and be nonzero in between.
In the figures we plot the ensemble average ({(m)), and the
normalized fluctuations X=%[(<m2))—<(m>)2], where ((---))
denotes an ensemble average over realizations of the random
noise terms and initial conditions. We present separately the
results for Gaussian and for exponentially distributed fre-
quencies.

A. Gaussian distributed frequencies

The natural frequencies w; are drawn from a Gaussian
distribution of mean (w) and variance o°. In Fig. 5(a) we
present the results for different values of the mean frequency
(w) as a function of the noise intensity ¢. One can see that
for small o the order parameter ({(m)) vanishes or, equiva-
lently, that the global phase is constant indicating that all
oscillators are in the rest state. When reaching the critical

value o, the global phase W() starts to rotate, i.e., W(r)
~m#0. This is the regime of synchronized firing where a
macroscopic fraction of the oscillators fire in synchrony. In-
creasing the diversity over the second critical value o7, the
global phase W is constant again. This is the phase where all
units fire in a desynchronized manner. As predicted by Eq.
(11) the second transition is relatively constant regarding
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FIG. 5. Simulation results for Gaussian distributed frequencies:
(a) the order parameter ((m)) for C=4.0 and various values of {w).
The location of the second transition changes little by small varia-
tions in {w) if it is close to one. Simulations were done with N
=102 400. (b) Ensemble fluctuations (performed over 1000 realiza-
tions of the quenched noise variables and initial conditions) of the
order parameter increase with system size ({(w)=0.97 and C=4.0).

small changes in (w) when it is close to one.

The precise numerical determination of the location of the
transition points o, and o, is hindered by the finite-size ef-
fects. We have found that the location of the maximum of the
fluctuations of m can give us a good estimator of the transi-
tion points, as it is relatively constant with system size, see
Fig. 5(b). The results for different values of the coupling
strength C are indicated with symbols in the phase diagram
(Fig. 3). The first transition is predicted with high accuracy
whereas the second transition is highly overestimated by the
order parameter expansion. Another feature predicted by the
order parameter expansion, namely, the existence of a mini-
mal coupling necessary for inducing coherent firing, is in-
deed observed in the simulations. The discrepancy between
the predicted o, and the observation is a consequence of the
large diversity as there the omitted higher-order terms be-
come relevant. We note that the solution of the fixed point
Egs. (7)—(9) can be obtained with arbitrary precision and for
the calculation of the phase diagram we assured a sufficient
convergence of the result.

In the vicinity of both transitions at o, or o-é, the ensemble
fluctuations y of the order parameter diverge with system
size. As Fig. 6(a) shows, the maximum value y,,,(N) scales
as N¢ with ¢=0.65*=0.03 at the first transition and c¢
=0.61 =0.07 at the second. Interestingly enough, the values
of the critical exponent at both transitions seem to be consis-
tent with the value c¢=2/3 observed in a phase transition
induced by quenched noise in a Ginzburg-Landau model
[10]. It turns out that the full dependence of N and o at both
transitions can be fitted using standard finite-size-scaling
theory [29,30] as ((m(c,N)))=N"2f,(eN’) and x(o,N)
=N°f (eN?), with e=1-0/0, or e=1-0/0,, and being f,
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FIG. 6. Finite size analysis for Gaussian distributed frequencies
with (w)=0.97 and C=4: (a) linear fits of maximal fluctuations
yield In(x,,q) ~ ¢ In(N) with ¢=0.65*0.07 for the first transition
(circles) and ¢=0.6 £ 0.1 for the second (squares). (b) Rescaled or-
der parameter ({m(o,N)))N?? collapses as a function of eN’ with
exponent b=1/3, (N=12 800, ...,204 800).

and f, suitable scaling functions different for the two transi-
tions. Our numerical results are not sufficiently precise to
allow an accurate determination of the exponent b, but rea-
sonable scaling collapse of the data, see Fig. 6(b), is
achieved using b=1/3, as suggested by the analogy with the
Ginzburg-Landau model mentioned before.

B. Exponentially distributed frequencies

The probability distribution function for the natural fre-
quencies is g(w;)=e "“’/{w) for w;=0. As mentioned be-
fore, this distribution has only one parameter as the standard
deviation is equal to the mean o=(w). It is chosen such that
all rotators have natural frequencies in the same, anticlock-
wise, direction. As shown in Fig. 7 we find the same dynami-
cal regimes as a function of the disorder o as in the case of
an arbitrary distribution. This is in accordance to the theoret-
ical predictions displayed in Fig. 4. the transition into coher-
ent firing is rather constant and happens around o.=1, the
interval grows with rising coupling strength and a minimal C

Py ; ; ;
) b C=4.0 ——— i
z C=5.0
g
~ = L5F 1
£ &
g ' |
= ost 1
0 -
a) 0 1 2 3 4 5 6
w300 ; :
g N=12800 ——
= N=25600 -~
2 o0l o', N=51200 - |
E ., N=102400
= 2
j5)
N
=
£
=}
Z
b 0.99 1.01 1.03
Diversity, o

FIG. 7. Simulation results for exponentially distributed w;s: (a)
the order parameter is nonzero for finite disorder. Fluctuations show
that the first transition takes place around o= 1, as Eq. (12) predicts
for large C. (b) Ensemble fluctuations (for C=5.0) diverge at the
first transition for increasing N.
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FIG. 8. Finite size analysis for exponentially distributed fre-
quencies (C=5) (a) linear fit of maximal fluctuations yields ¢
=0.65=*0.02. (b) Rescaled order parameter with scaling exponent
b=1/3.

is needed to induce coherent firing. Again the second transi-
tion is overestimated. As before, we use the maximum of the
fluctuations in the order parameter [see Fig. 7(b) for the case
of the transition at ] to estimate values for the critical noise
intensities and annotate them in the corresponding phase dia-
gram (Fig. 4).

The first transition, into coherent firing, is marked by di-
verging fluctuations [for a particular case, C=5.0, see Fig.
7(b)] which scale in the same way with system size N as we
have seen in the Gaussian case (see evidence in Fig. 8).
However, in stark contrast to Gaussian distributions, the
simulations with exponential distributed frequencies give
strong evidence that the transition into asynchronous firing is
now of first order. We compare the histograms of steady
states for 1000 noise realizations around both transitions in
Fig. 9. At the first transition (left column) the distribution
broadens at the critical disorder and moves continuously to
higher values. On the contrary the equilibria near the second
transition are narrowly distributed around zero or around the
nonzero value in the ordered state, typical for a first-order
transition (right column).

First transition Second transition

=09 o=4.7
1000 — 1000 —
E 500 500
) -_L_‘_l
0 0
c-1.0 6-4.75
1000 — 1000 —
£ sooF 500
) L w
0 0
c-1.1
1000 ———
E  so0F
(=5
%025 03

m m

FIG. 9. Histogram of 1000 steady states from simulations of
Eqgs. (1) with exponentially distributed frequencies. At the transition
into coherent firing (left column) the values are distributed around
one single value, broadening near the critical disorder. The destruc-
tion of the ordered state is a first-order transition (right column), the
values are distributed narrowly around zero or the nonzero value,
C=5.0.
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FIG. 10. Results from the integration of Egs. (4)—(6) in the
vicinity of the transition points with (w)=0.97 and C=4.0. Both
transitions, into the ordered state and into asynchronous firing, pan-
els (a) and (b), respectively, are of second order.

It turns out that the order parameter expansion developed
in the previous section predicts that the second transition into
asynchronous firing occurring at =0, is of second order
for the Gaussian distribution and of first order for the expo-
nential distribution of frequencies. In fact it predicts that any
distribution leads to a first-order transition out of the ordered
state if the mean and variance are set equal (or in any other
linear relationship) and varied simultaneously. The results of
the numerical integration of the system of Egs. (4)—(6) for
selected sets of parameters ({(w),o,C) for the mean phase

velocity Vare plotted in Fig. 10 (Gaussian) and Fig. 11 (ex-

ponential). It is evident the jump of ¥ at the second critical
point o, in the case of the exponential distribution whereas it
is continuous for the Gaussian distribution. The first transi-
tion to synchronized firing at o=0, is predicted to be con-
tinuous independently of the distribution of frequencies.

V. CONCLUSIONS

We have used the order parameter expansion to approxi-
mate the dynamics of the global phase in systems of coupled
active rotators under the influence of quenched disorder. The
method leads straightforwardly to a system of three differen-
tial equations easier treatable than the full system and more
accurate than other approximations used in previous works.
In agreement with exact results for the full system, the global
phase of the reduced system can undergo a transition from a
rest state into a rotating regime and back into a rest state,
when subjected to increasing diversity. In the rest states, W(r)

PHYSICAL REVIEW E 82, 051127 (2010)
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FIG. 11. Results from the integration of Egs. (4)-(6) in the
vicinity of the transition points with {(w)=0. Whereas the transition
into the ordered state is of second order [panel (a)] the second
transition is discontinuous [panel (b)].

is time independent and the angular speed is zero, whereas in
the intermediate regime of coherent firing, W(¢) increases
with time and the angular speed adopts a nonzero value. Our
treatment allows us to give analytic expressions for the criti-
cal disorder values in the limit of large coupling. We have
seen that the first transition is predicted to a high degree of
accuracy whereas the second is highly overestimated.

We have used numerical simulations to show that the en-
semble fluctuations of the order parameter diverge at the
transition points. The simulations with Gaussian distributed
frequencies show continuous transitions, both in and out of
the coherent firing state, but if the frequencies are distributed
according to an exponential distribution (and therefore the
mean and variance are varied simultaneously) then the de-
struction of the ordered state is achieved through a first-order
transition. The order parameter expansion scheme predicts
this distinction of the transitions. A finite-size scaling analy-
sis of the numerical simulations data indicate that the critical
exponents of the transitions are consistent with those found
in the athermal Ginzburg-Landau model with additive
quenched noise.
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