The continuous and discrete symmetries of the Kuramoto-Sivashinsky system
restricted to a spatially periodic domain play a prominent role in shaping the
invariant sets of its chaotic dynamics. The continuous spatial translation
symmetry leads to relative equilibrium (traveling wave) and relative periodic
orbit (modulated traveling wave) solutions. The discrete symmetries lead to
existence of equilibrium and periodic orbit solutions, induce decomposition of
state space into invariant subspaces, and enforce certain structurally stable
heteroclinic connections between equilibria. We show, on the example of a
particular small-cell Kuramoto-Sivashinsky system, how the geometry of its
dynamical state space is organized by a rigid `cage' built by heteroclinic
connections between equilibria, and demonstrate the preponderance of unstable
relative periodic orbits and their likely role as the skeleton underpinning
spatiotemporal turbulence in systems with continuous symmetries. We also offer
novel visualizations of the high-dimensional Kuramoto-Sivashinsky state space
flow through projections onto low-dimensional, PDE representation independent,
dynamically invariant intrinsic coordinate frames, as well as in terms of the
physical, symmetry invariant energy transfer rates.Comment: 31 pages, 17 figures; added references, corrected typos. Due to file
size restrictions some figures in this preprint are of low quality. A high
quality copy may be obtained from
http://www.cns.gatech.edu/~predrag/papers/preprints.html#rp