24 research outputs found

    Paying for parking : improving stated-preference surveys

    Get PDF
    This article describes an experiment which introduced random ranges into the variables used for the design of a stated preference survey and its effects on willingness to pay for parking. User behaviour at the time of parking was modelled to determine their willingness to pay in order to get to their final destination more quickly. Calculating willingness to pay is fundamental during the social and economic assessment of projects. It is important to correctly model how car parks and their users interact in order to get values which represent reality as closely as possible. Willingness to pay is calculated using a stated preference survey and by calibrating multinomial logit models, taking variable tastes into account. It is shown that a value with a low variability can be obtained for willingness to pay by correctly establishing the context of the choice and randomly changing the variables around an average value

    Tradeoffs between Time Allocations to Maintenance Activities/Travel and Discretionary Activities/Travel

    No full text
    This paper focuses on the tradeoff in time allocation between maintenance activities/travel and discretionary activities/travel. We recognize that people generally must travel a minimum amount of time in order to allocate one unit of time to the activity. This minimum amount of travel is represented by the travel time price, a ratio obtained by dividing the total amount of time traveling to maintenance or discretionary activities by the total amount of time spent on activities of the same type; it is the time equivalent of the monetary price for performing an activity. Using the San Francisco Bay Area 1996 Household Travel Survey data and applying the Almost Ideal Demand System (AIDS) of demand equations, we found that with respect to the time equivalent of income elasticities of maintenance and discretionary activities, the former is less than unity and the latter is greater than unity. In other words, maintenance activities are a necessity and discretionary activities are a luxury. With respect to the own travel time price elasticities, if the travel time price of performing a certain type of activity increases (for reasons such as traffic congestion), one would reduce the time allocated to that type of activity. Time spent on maintenance activities is less elastic than the time spent on discretionary activities. As for the cross travel time price elasticities (changes in time allocated to activity type i in responses to changes in the time price for activity type j), we found that ɛ dm >0 and ɛ md >0, suggesting a substitution effect between maintenance and discretionary activities. Copyright Springer 2006AIDS demand equations, time allocation, tradeoff, travel time price,
    corecore