245 research outputs found

    Degenerate Frobenius manifolds and the bi-Hamiltonian structure of rational Lax equations

    Full text link
    The bi-Hamiltonian structure of certain multi-component integrable systems, generalizations of the dispersionless Toda hierarchy, is studies for systems derived from a rational Lax function. One consequence of having a rational rather than a polynomial Lax function is that the corresponding bi-Hamiltonian structures are degenerate, i.e. the metric which defines the Hamiltonian structure has vanishing determinant. Frobenius manifolds provide a natural setting in which to study the bi-Hamiltonian structure of certain classes of hydrodynamic systems. Some ideas on how this structure may be extanded to include degenerate bi-Hamiltonian structures, such as those given in the first part of the paper, are given.Comment: 28 pages, LaTe

    Quadratic Poisson brackets compatible with an algebra structure

    Full text link
    Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication are studied. A notion of a bracket compatible with the multiplication is introduced and an effective criterion of such compatibility is given. Among compatible brackets, a subclass of coboundary brackets is described, and such brackets are enumerated in a number of examples.Comment: 6 page

    Quadratic Poisson brackets and Drinfel'd theory for associative algebras

    Full text link
    Quadratic Poisson brackets on associative algebras are studied. Such a bracket compatible with the multiplication is related to a differentiation in tensor square of the underlying algebra. Jacobi identity means that this differentiation satisfies a classical Yang--Baxter equation. Corresponding Lie groups are canonically equipped with a Poisson Lie structure. A way to quantize such structures is suggested.Comment: latex, no figures

    Quadratic Poisson brackets and Drinfeld theory for associative algebras

    Full text link
    The paper is devoted to the Poisson brackets compatible with multiplication in associative algebras. These brackets are shown to be quadratic and their relations with the classical Yang--Baxter equation are revealed. The paper also contains a description of Poisson Lie structures on Lie groups whose Lie algebras are adjacent to an associative structure.Comment: 16 pages, latex, no figure

    Multicomponent bi-superHamiltonian KdV systems

    Full text link
    It is shown that a new class of classical multicomponent super KdV equations is bi-superHamiltonian by extending the method for the verification of graded Jacobi identity. The multicomponent extension of super mKdV equations is obtained by using the super Miura transformation

    Supersymmetric Harry Dym Type Equations

    Full text link
    A supersymmetric version is proposed for the well known Harry Dym system. A general class super Lax operator which leads to consistent equations is considered.Comment: 4 pages, latex, no figure

    On the Miura map between the dispersionless KP and dispersionless modified KP hierarchies

    Full text link
    We investigate the Miura map between the dispersionless KP and dispersionless modified KP hierarchies. We show that the Miura map is canonical with respect to their bi-Hamiltonian structures. Moreover, inspired by the works of Takasaki and Takebe, the twistor construction of solution structure for the dispersionless modified KP hierarchy is given.Comment: 19 pages, Latex, no figure

    On Non-Commutative Integrable Burgers Equations

    Get PDF
    We construct the recursion operators for the non-commutative Burgers equations using their Lax operators. We investigate the existence of any integrable mixed version of left- and right-handed Burgers equations on higher symmetry grounds.Comment: 8 page

    Dispersionful analogues of Benney's equations and NN-wave systems

    Full text link
    We recall Krichever's construction of additional flows to Benney's hierarchy, attached to poles at finite distance of the Lax operator. Then we construct a ``dispersionful'' analogue of this hierarchy, in which the role of poles at finite distance is played by Miura fields. We connect this hierarchy with NN-wave systems, and prove several facts about the latter (Lax representation, Chern-Simons-type Lagrangian, connection with Liouville equation, τ\tau-functions).Comment: 12 pages, latex, no figure

    Contraction of the G_r,s Quantum Group to its Nonstandard analogue and corresponding Coloured Quantum Groups

    Full text link
    The quantum group G_r,s provides a realisation of the two parameter quantum GL_p,q(2) which is known to be related to the two parameter nonstandard GL_hh'(2) group via a contraction method. We apply the contraction procedure to G_r,s and obtain a new Jordanian quantum group G_m,k. Furthermore, we provide a realisation of GL_h,h'(2) in terms of G_m,k. The contraction procedure is then extended to the coloured quantum group GL_r{\lambda,\mu}(2) to yield a new Jordanian quantum group GL_m{\lambda,\mu}(2). Both G_r,s and G_m,k are then generalised to their coloured versions which inturn provide similar realisations of GL_r{\lambda,\mu}(2) and GL_m{\lambda,\mu}(2).Comment: 22 pages LaTeX, to be published in J. Math. Phy
    corecore