The bi-Hamiltonian structure of certain multi-component integrable systems,
generalizations of the dispersionless Toda hierarchy, is studies for systems
derived from a rational Lax function. One consequence of having a rational
rather than a polynomial Lax function is that the corresponding bi-Hamiltonian
structures are degenerate, i.e. the metric which defines the Hamiltonian
structure has vanishing determinant. Frobenius manifolds provide a natural
setting in which to study the bi-Hamiltonian structure of certain classes of
hydrodynamic systems. Some ideas on how this structure may be extanded to
include degenerate bi-Hamiltonian structures, such as those given in the first
part of the paper, are given.Comment: 28 pages, LaTe