211 research outputs found

    Quantum computation with Turaev-Viro codes

    Full text link
    The Turaev-Viro invariant for a closed 3-manifold is defined as the contraction of a certain tensor network. The tensors correspond to tetrahedra in a triangulation of the manifold, with values determined by a fixed spherical category. For a manifold with boundary, the tensor network has free indices that can be associated to qudits, and its contraction gives the coefficients of a quantum error-correcting code. The code has local stabilizers determined by Levin and Wen. For example, applied to the genus-one handlebody using the Z_2 category, this construction yields the well-known toric code. For other categories, such as the Fibonacci category, the construction realizes a non-abelian anyon model over a discrete lattice. By studying braid group representations acting on equivalence classes of colored ribbon graphs embedded in a punctured sphere, we identify the anyons, and give a simple recipe for mapping fusion basis states of the doubled category to ribbon graphs. We explain how suitable initial states can be prepared efficiently, how to implement braids, by successively changing the triangulation using a fixed five-qudit local unitary gate, and how to measure the topological charge. Combined with known universality results for anyonic systems, this provides a large family of schemes for quantum computation based on local deformations of stabilizer codes. These schemes may serve as a starting point for developing fault-tolerance schemes using continuous stabilizer measurements and active error-correction.Comment: 53 pages, LaTeX + 199 eps figure

    Enumeration of quarter-turn symmetric alternating-sign matrices of odd order

    Full text link
    It was shown by Kuperberg that the partition function of the square-ice model related to the quarter-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with the quarter-turn symmetric alternating-sign matrices of odd order, and show that the partition function of this model can be also written in a similar way. This allows to prove, in particular, the conjectures by Robbins related to the enumeration of the quarter-turn symmetric alternating-sign matrices.Comment: 11 pages, 13 figures; minor correction

    Invariant tensors and cellular categories

    Get PDF
    Let U be the quantised enveloping algebra associated to a Cartan matrix of finite type. Let W be the tensor product of a finite list of highest weight representations of U. Then the centraliser algebra of W has a basis called the dual canonical basis which gives an integral form. We show that this integral form is cellular by using results due to Lusztig.Comment: 6 pages; to appear in Journal of Algebr

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    Exact expressions for correlations in the ground state of the dense O(1) loop model

    Full text link
    Conjectures for analytical expressions for correlations in the dense O(1)(1) loop model on semi infinite square lattices are given. We have obtained these results for four types of boundary conditions. Periodic and reflecting boundary conditions have been considered before. We give many new conjectures for these two cases and review some of the existing results. We also consider boundaries on which loops can end. We call such boundaries ''open''. We have obtained expressions for correlations when both boundaries are open, and one is open and the other one is reflecting. Also, we formulate a conjecture relating the ground state of the model with open boundaries to Fully Packed Loop models on a finite square grid. We also review earlier obtained results about this relation for the three other types of boundary conditions. Finally, we construct a mapping between the ground state of the dense O(1)(1) loop model and the XXZ spin chain for the different types of boundary conditions.Comment: 25 pages, version accepted by JSTA

    Three-coloring statistical model with domain wall boundary conditions. I. Functional equations

    Full text link
    In 1970 Baxter considered the statistical three-coloring lattice model for the case of toroidal boundary conditions. He used the Bethe ansatz and found the partition function of the model in the thermodynamic limit. We consider the same model but use other boundary conditions for which one can prove that the partition function satisfies some functional equations similar to the functional equations satisfied by the partition function of the six-vertex model for a special value of the crossing parameter.Comment: 16 pages, notations changed for consistency with the next part, appendix adde

    A Generating Function for all Semi-Magic Squares and the Volume of the Birkhoff Polytope

    Get PDF
    We present a multivariate generating function for all n x n nonnegative integral matrices with all row and column sums equal to a positive integer t, the so called semi-magic squares. As a consequence we obtain formulas for all coefficients of the Ehrhart polynomial of the polytope B_n of n x n doubly-stochastic matrices, also known as the Birkhoff polytope. In particular we derive formulas for the volumes of B_n and any of its faces.Comment: 24 pages, 1 figure. To appear in Journal of Algebraic Combinatoric

    When the Truth Is Not Too Hard to Handle: An Event-Related Potential Study on the Pragmatics of Negation

    Get PDF
    Our brains rapidly map incoming language onto what we hold to be true. Yet there are claims that such integration and verification processes are delayed in sentences containing negation words like not. However, studies have often confounded whether a statement is true and whether it is a natural thing to say during normal communication. In an event-related potential (ERP) experiment, we aimed to disentangle effects of truth value and pragmatic licensing on the comprehension of affirmative and negated real-world statements. As in affirmative sentences, false words elicited a larger N400 ERP than did true words in pragmatically licensed negated sentences (e.g., “In moderation, drinking red wine isn't bad/good
”), whereas true and false words elicited similar responses in unlicensed negated sentences (e.g., “A baby bunny's fur isn't very hard/soft
”). These results suggest that negation poses no principled obstacle for readers to immediately relate incoming words to what they hold to be true

    On the symmetry of the partition function of some square ice models

    Full text link
    We consider the partition function Z(N;x_1,...,x_N,y_1,...,y_N) of the square ice model with domain wall boundary. We give a simple proof of the symmetry of Z with respect to all its variables when the global parameter a of the model is set to the special value a=exp(i\pi/3). Our proof does not use any determinantal interpretation of Z and can be adapted to other situations (for examples to some symmetric ice models).Comment: 8 page

    Post-quantum cryptography

    Get PDF
    Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.</p
    • 

    corecore