33 research outputs found

    Longitudinal Evaluation of an N-Ethyl-N-Nitrosourea-Created Murine Model with Normal Pressure Hydrocephalus

    Get PDF
    Normal-pressure hydrocephalus (NPH) is a neurodegenerative disorder that usually occurs late in adult life. Clinically, the cardinal features include gait disturbances, urinary incontinence, and cognitive decline.Herein we report the characterization of a novel mouse model of NPH (designated p23-ST1), created by N-ethyl-N-nitrosourea (ENU)-induced mutagenesis. The ventricular size in the brain was measured by 3-dimensional micro-magnetic resonance imaging (3D-MRI) and was found to be enlarged. Intracranial pressure was measured and was found to fall within a normal range. A histological assessment and tracer flow study revealed that the cerebral spinal fluid (CSF) pathway of p23-ST1 mice was normal without obstruction. Motor functions were assessed using a rotarod apparatus and a CatWalk gait automatic analyzer. Mutant mice showed poor rotarod performance and gait disturbances. Cognitive function was evaluated using auditory fear-conditioned responses with the mutant displaying both short- and long-term memory deficits. With an increase in urination frequency and volume, the mutant showed features of incontinence. Nissl substance staining and cell-type-specific markers were used to examine the brain pathology. These studies revealed concurrent glial activation and neuronal loss in the periventricular regions of mutant animals. In particular, chronically activated microglia were found in septal areas at a relatively young age, implying that microglial activation might contribute to the pathogenesis of NPH. These defects were transmitted in an autosomal dominant mode with reduced penetrance. Using a whole-genome scan employing 287 single-nucleotide polymorphic (SNP) markers and further refinement using six additional SNP markers and four microsatellite markers, the causative mutation was mapped to a 5.3-cM region on chromosome 4.Our results collectively demonstrate that the p23-ST1 mouse is a novel mouse model of human NPH. Clinical observations suggest that dysfunctions and alterations in the brains of patients with NPH might occur much earlier than the appearance of clinical signs. p23-ST1 mice provide a unique opportunity to characterize molecular changes and the pathogenic mechanism of NPH

    Approaching Biomarkers of Membranous Nephropathy from a Murine Model to Human Disease

    Get PDF
    Background. Membranous glomerulonephropathy (MN) is the most prevalent cause of nephrotic syndrome in adult humans. However, the specific biomarkers of MN have not been fully elucidated. We examined the alterations in gene expression associated with the development of MN. Methods. Murine MN was induced by cationic bovine serum albumin (cBSA). After full-blown MN, cDNA microarray analysis was performed to identify gene expression changes, and highly expressed genes were evaluated as markers both in mice and human kidney samples. Results. MN mice revealed clinical proteinuria and the characteristic diffuse thickening of the glomerular basement membrane. There were 175 genes with significantly different expressions in the MN kidneys compared with the normal kidneys. Four genes, metallothionein-1 (Mt1), cathepsin D (CtsD), lymphocyte 6 antigen complex (Ly6), and laminin receptor-1 (Lamr1), were chosen and quantified. Mt1 was detected mainly in tubules, Lamr1 was highly expressed in glomeruli, and CtsD was detected both in tubules and glomeruli. The high expressions of Lamr1 and CtsD were also confirmed in human kidney biopsies. Conclusion. The murine MN model resembled the clinical and pathological features of human MN and may provide a tool for investigating MN. Applying cDNA microarray analysis may help to identify biomarkers for human MN

    CARD8 SNP rs11672725 Identified as a Potential Genetic Variant for Adult-Onset Still’s Disease

    No full text
    Adult-onset Still’s disease (AOSD), an autoinflammatory disorder, is related to the dysregulation of NLR3-containing a pyrin domain (NLRP3)-inflammasome signaling. We aimed to investigate the associations of genetic polymorphisms of NLRP3-inflammasome signaling with AOSD susceptibility and outcome and to examine their functional property. Fifty-three candidate single-nucleotide polymorphisms (SNPs) involved in NLRP3-inflammasome response were genotyped using Sequenom MassArray on the samples from 66 AOSD patients and 128 healthy controls. The significant SNPs were validated by direct sequencing using a TaqMan SNP analyzer. Serum levels of associated gene products were examined by ELISA. One SNP rs11672725 of CARD8 gene was identified to be significantly associated with AOSD susceptibility by using MassArray and subsequent replication validation (p = 3.57 × 10−7; odds ratio 3.02). Functional assays showed that serum CARD8 levels were significantly lower in AOSD patients (median, 10,524.6 pg/mL) compared to controls (13,964.1 pg/mL, p = 0.005), while levels of caspase-1, IL-1β and IL-18 were significantly higher in patients (107.1 pg/mL, 2.1 pg/mL, and 1495.8 pg/mL, respectively) than those in controls (99.0 pg/mL, 1.0 pg/mL, and 141.4 pg/mL, respectively). Patients carrying rs11672725CC genotype had significantly higher serum caspase-1 and IL-18 levels (121.3 pg/mL and 1748.6 pg/mL) compared to those with CT/TT genotypes (72.6 pg/mL, p = 0.019 and 609.3 pg/mL, p = 0.046). A higher proportion of patients with rs11672725CC genotype had a systemic pattern of disease outcome, which was linked to low CARD8 levels. A novel variant, rs11672725, of the CARD8 gene was identified as a potential genetic risk for AOSD. Patients carrying the rs11672725CC genotype and C allele had low CARD8 levels, and were predisposed to a systemic pattern with an elevated expression of inflammasome signaling

    The Paradoxical Role of Uric Acid in Osteoporosis

    No full text
    Because of its high prevalence worldwide, osteoporosis is considered a serious public health concern. Many known risk factors for developing osteoporosis have been identified and are crucial if planning health care needs. Recently, an association between uric acid (UA) and bone fractures had been explored. Extracellular UA exhibits antioxidant properties by effectively scavenging free radicals in human plasma, but this benefit might be disturbed by the hydrophobic lipid layer of the cell membrane. In contrast, intracellular free oxygen radicals are produced during UA degradation, and superoxide is further enhanced by interacting with NADPH oxidase. This intracellular oxidative stress, together with inflammatory cytokines induced by UA, stimulates osteoclast bone resorption and inhibits osteoblast bone formation. UA also inhibits vitamin D production and thereby results in hyper-parathyroidism, which causes less UA excretion in the intestines and renal proximal tubules by inhibiting the urate transporter ATP-binding cassette subfamily G member 2 (ABCG2). At normal or high levels, UA is associated with a reduction in bone mineral density and protects against bone fracture. However, in hyperuricemia or gout arthritis, UA increases bone fracture risk because oxidative stress and inflammatory cytokines can increase bone resorption and decrease bone formation. Vitamin D deficiency, and consequent secondary hyperparathyroidism, can further increase bone resorption and aggravated bone loss in UA-induced osteoporosis
    corecore