25,041 research outputs found

    Effective Cloud Detection and Segmentation using a Gradient-Based Algorithm for Satellite Imagery; Application to improve PERSIANN-CCS

    Full text link
    Being able to effectively identify clouds and monitor their evolution is one important step toward more accurate quantitative precipitation estimation and forecast. In this study, a new gradient-based cloud-image segmentation technique is developed using tools from image processing techniques. This method integrates morphological image gradient magnitudes to separable cloud systems and patches boundaries. A varying scale-kernel is implemented to reduce the sensitivity of image segmentation to noise and capture objects with various finenesses of the edges in remote-sensing images. The proposed method is flexible and extendable from single- to multi-spectral imagery. Case studies were carried out to validate the algorithm by applying the proposed segmentation algorithm to synthetic radiances for channels of the Geostationary Operational Environmental Satellites (GOES-R) simulated by a high-resolution weather prediction model. The proposed method compares favorably with the existing cloud-patch-based segmentation technique implemented in the PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Cloud Classification System) rainfall retrieval algorithm. Evaluation of event-based images indicates that the proposed algorithm has potential to improve rain detection and estimation skills with an average of more than 45% gain comparing to the segmentation technique used in PERSIANN-CCS and identifying cloud regions as objects with accuracy rates up to 98%

    Experimental and theoretical study of artificial plasma layers produced by two intersecting beams in a chamber

    Get PDF
    The work done on the Bragg scattering of electromagnetic waves by microwave produced plasma layers is reported. Also summarized is the work accomplished on the propagation of high power microwave pulses in an air breakdown environment. Ongoing work on the theoretical model and numerical results of pulse propagation in air is also presented as are the results of studying the decay of plasma density and temperature

    A Fully Convolutional Tri-branch Network (FCTN) for Domain Adaptation

    Full text link
    A domain adaptation method for urban scene segmentation is proposed in this work. We develop a fully convolutional tri-branch network, where two branches assign pseudo labels to images in the unlabeled target domain while the third branch is trained with supervision based on images in the pseudo-labeled target domain. The re-labeling and re-training processes alternate. With this design, the tri-branch network learns target-specific discriminative representations progressively and, as a result, the cross-domain capability of the segmenter improves. We evaluate the proposed network on large-scale domain adaptation experiments using both synthetic (GTA) and real (Cityscapes) images. It is shown that our solution achieves the state-of-the-art performance and it outperforms previous methods by a significant margin.Comment: Accepted by ICASSP 201

    Toward Guaranteed Illumination Models for Non-Convex Objects

    Full text link
    Illumination variation remains a central challenge in object detection and recognition. Existing analyses of illumination variation typically pertain to convex, Lambertian objects, and guarantee quality of approximation in an average case sense. We show that it is possible to build V(vertex)-description convex cone models with worst-case performance guarantees, for non-convex Lambertian objects. Namely, a natural verification test based on the angle to the constructed cone guarantees to accept any image which is sufficiently well-approximated by an image of the object under some admissible lighting condition, and guarantees to reject any image that does not have a sufficiently good approximation. The cone models are generated by sampling point illuminations with sufficient density, which follows from a new perturbation bound for point images in the Lambertian model. As the number of point images required for guaranteed verification may be large, we introduce a new formulation for cone preserving dimensionality reduction, which leverages tools from sparse and low-rank decomposition to reduce the complexity, while controlling the approximation error with respect to the original cone

    Characterization and Modeling of the Ratcheting Behavior of the Ferritic-Martensitic Steel P91

    Get PDF
    The ratcheting behavior of 9% Cr-1% Mo ferritic-martensitic (FM) steel P91 is investigated by uniaxial cyclic loading tests. Strain-controlled tests are performed to evaluate the cyclic softening and stress-controlled tests are performed to evaluate the ratcheting behavior. A new constitutive model is proposed to fit the ratcheting behavior of P91. A new dynamic recovery rule is designed to fit the ratcheting rates under multiple loading conditions
    corecore