25,041 research outputs found
Effective Cloud Detection and Segmentation using a Gradient-Based Algorithm for Satellite Imagery; Application to improve PERSIANN-CCS
Being able to effectively identify clouds and monitor their evolution is one
important step toward more accurate quantitative precipitation estimation and
forecast. In this study, a new gradient-based cloud-image segmentation
technique is developed using tools from image processing techniques. This
method integrates morphological image gradient magnitudes to separable cloud
systems and patches boundaries. A varying scale-kernel is implemented to reduce
the sensitivity of image segmentation to noise and capture objects with various
finenesses of the edges in remote-sensing images. The proposed method is
flexible and extendable from single- to multi-spectral imagery. Case studies
were carried out to validate the algorithm by applying the proposed
segmentation algorithm to synthetic radiances for channels of the Geostationary
Operational Environmental Satellites (GOES-R) simulated by a high-resolution
weather prediction model. The proposed method compares favorably with the
existing cloud-patch-based segmentation technique implemented in the
PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Network - Cloud Classification System) rainfall retrieval
algorithm. Evaluation of event-based images indicates that the proposed
algorithm has potential to improve rain detection and estimation skills with an
average of more than 45% gain comparing to the segmentation technique used in
PERSIANN-CCS and identifying cloud regions as objects with accuracy rates up to
98%
Experimental and theoretical study of artificial plasma layers produced by two intersecting beams in a chamber
The work done on the Bragg scattering of electromagnetic waves by microwave produced plasma layers is reported. Also summarized is the work accomplished on the propagation of high power microwave pulses in an air breakdown environment. Ongoing work on the theoretical model and numerical results of pulse propagation in air is also presented as are the results of studying the decay of plasma density and temperature
A Fully Convolutional Tri-branch Network (FCTN) for Domain Adaptation
A domain adaptation method for urban scene segmentation is proposed in this
work. We develop a fully convolutional tri-branch network, where two branches
assign pseudo labels to images in the unlabeled target domain while the third
branch is trained with supervision based on images in the pseudo-labeled target
domain. The re-labeling and re-training processes alternate. With this design,
the tri-branch network learns target-specific discriminative representations
progressively and, as a result, the cross-domain capability of the segmenter
improves. We evaluate the proposed network on large-scale domain adaptation
experiments using both synthetic (GTA) and real (Cityscapes) images. It is
shown that our solution achieves the state-of-the-art performance and it
outperforms previous methods by a significant margin.Comment: Accepted by ICASSP 201
Toward Guaranteed Illumination Models for Non-Convex Objects
Illumination variation remains a central challenge in object detection and
recognition. Existing analyses of illumination variation typically pertain to
convex, Lambertian objects, and guarantee quality of approximation in an
average case sense. We show that it is possible to build V(vertex)-description
convex cone models with worst-case performance guarantees, for non-convex
Lambertian objects. Namely, a natural verification test based on the angle to
the constructed cone guarantees to accept any image which is sufficiently
well-approximated by an image of the object under some admissible lighting
condition, and guarantees to reject any image that does not have a sufficiently
good approximation. The cone models are generated by sampling point
illuminations with sufficient density, which follows from a new perturbation
bound for point images in the Lambertian model. As the number of point images
required for guaranteed verification may be large, we introduce a new
formulation for cone preserving dimensionality reduction, which leverages tools
from sparse and low-rank decomposition to reduce the complexity, while
controlling the approximation error with respect to the original cone
Characterization and Modeling of the Ratcheting Behavior of the Ferritic-Martensitic Steel P91
The ratcheting behavior of 9% Cr-1% Mo ferritic-martensitic (FM) steel P91 is investigated by uniaxial cyclic loading tests. Strain-controlled tests are performed to evaluate the cyclic softening and stress-controlled tests are performed to evaluate the ratcheting behavior. A new constitutive model is proposed to fit the ratcheting behavior of P91. A new dynamic recovery rule is designed to fit the ratcheting rates under multiple loading conditions
- …