23,350 research outputs found
Designers manual for circuit design by analog/digital techniques Final report
Manual for designing circuits by hybrid compute
Light-emitting current of electrically driven single-photon sources
The time-dependent tunnelling current arising from the electron-hole
recombination of exciton state is theoretically studied using the
nonequilibrium Green's function technique and the Anderson model with two
energy levels. The charge conservation and gauge invariance are satisfied in
the tunnelling current. Apart from the classical capacitive charging and
discharging behavior, interesting oscillations superimpose on the tunnelling
current for the applied rectangular pulse voltage.Comment: 14 pages, 5 figure
The starting transient of solid propellant rocket motors with high internal gas velocities
A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system
Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum-dot system
The charge transport of a serially coupled quantum dots (SCQD) connected to
the metallic electrodes is theoretically investigated in the Coulomb blockade
regime. A closed-form expression for the tunneling current of SCQD in the
{\color{red} weak interdot hopping} limit is obtained by solving an extended
two-site Hubbard model via the Green's function method. We use this expression
to investigate spin current rectification, negative differential conductance,
and coherent tunneling in the nonlinear response regime. The current
rectification arising from the space symmetry breaking of SCQD is suppressed by
increasing temperature. The calculation of SCQD is extended to the case of
multiple parallel SCQDs for studying the charge ratchet effect and SCQD with
multiple levels. In the linear response regime, the functionalities of spin
filter and low-temperature current filter are demonstrated to coexist in this
system. It is further demonstrated that two-electron spin singlet and triplet
states can be readily resolved from the measurement of Seebeck coefficient
rather than that of electrical conductance.Comment: 11 pages, 9 figures. Revised argument, results unchanged, added
reference
Thermoelectric and thermal rectification properties of quantum dot junctions
The electrical conductance, thermal conductance, thermal power and figure of
merit (ZT) of semiconductor quantum dots (QDs) embedded into an insulator
matrix connected with metallic electrodes are theoretically investigated in the
Coulomb blockade regime. The multilevel Anderson model is used to simulate the
multiple QDs junction system. The charge and heat currents in the sequential
tunneling process are calculated by the Keldysh Green function technique. In
the linear response regime the ZT values are still very impressive in the small
tunneling rates case, although the effect of electron Coulomb interaction on ZT
is significant. In the nonlinear response regime, we have demonstrated that the
thermal rectification behavior can be observed for the coupled QDs system,
where the very strong asymmetrical coupling between the dots and electrodes,
large energy level separation between dots and strong interdot Coulomb
interactions are required.Comment: 8 page and 14 figure
Fano interference effect on the transition spectrum of single electron transistors
We theoretically study the intraband transition spectrum of single electron
transistors (SETs) composed of individual self-assembled quantum dots. The
polarization of SETs is obtained by using the nonequilibrium Green's function
technique and the Anderson model with three energy levels. Owing to
nonradiative coupling between two excited states through the continuum of
electrodes, the Fano interference effect significantly influences the peak
position and intensity of infrared wavelength single-photon spectrum.Comment: 4 pages, 5 figure
On testing effectiveness of metamorphic relations: A case study
One fundamental challenge for software testing is the oracle problem which means that either there does not exist a mechanism (called oracle) to verify the test output given any possible program input or it is very expensive if not impossible to apply the oracle. Metamorphic testing is an innovative approach to oracle problem. In metamorphic testing metamorphic relations are derived from the innate characteristics of the software under test. These relations can help to generate test data and verify the correctness of the test result without the need of oracle. The effectiveness of metamorphic relations can play a significant role in the testing process. It has been argued that the metamorphic relations that cause different software execution behaviors should have high fault detection ability. In this paper we conduct a case study to analyze the relationship between the execution behavior and the fault-detection effectiveness of metamorphic relations. Some code coverage criteria are used to reflect the execution behavior. It is shown that there is a certain degree of correlation between the code coverage achieved by a metamorphic relation and its fault-detection effectiveness
Suppression of core polarization in halo nuclei
We present a microscopic study of halo nuclei, starting from the Paris and
Bonn potentials and employing a two-frequency shell model approach. It is found
that the core-polarization effect is dramatically suppressed in such nuclei.
Consequently the effective interaction for halo nucleons is almost entirely
given by the bare G-matrix alone, which presently can be evaluated with a high
degree of accuracy. The experimental pairing energies between the two halo
neutrons in He and Li nuclei are satisfactorily reproduced by our
calculation. It is suggested that the fundamental nucleon-nucleon interaction
can be probed in a clearer and more direct way in halo nuclei than in ordinary
nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches
version to appear in Phys. Rev. Letter
Tunnelling current and emission spectrum of a single electron transistor under optical pumping
Theoretical studies of the tunnelling current and emission spectrum of a
single electron transistor (SET) under optical pumping are presented. The
calculation is performed via Keldysh Green's function method within the
Anderson model with two energy levels. It is found that holes in the quantum
dot (QD) created by optical pumping lead to new channels for the electron
tunnelling from emitter to collector. As a consequence, an electron can tunnel
through the QD via additional channels, characterized by the exciton, trion and
biexciton states. It is found that the tunnelling current as a function of the
gate voltage displays a series of sharp peaks and the spacing between these
peaks can be used to determine the exciton binding energy as well as the
electron-electron Coulomb repulsion energy. In addition, we show that the
single-photon emission associated with the electron-hole recombination in the
exciton complexes formed in the QD can be controlled both electrically and
optically.Comment: 24 pages, 10 figure
- …