296 research outputs found

    Cross platform microarray analysis for robust identification of differentially expressed genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarrays have been widely used for the analysis of gene expression and several commercial platforms are available. The combined use of multiple platforms can overcome the inherent biases of each approach, and may represent an alternative that is complementary to RT-PCR for identification of the more robust changes in gene expression profiles.</p> <p>In this paper, we combined statistical and functional analysis for the cross platform validation of two oligonucleotide-based technologies, Affymetrix (AFFX) and Applied Biosystems (ABI), and for the identification of differentially expressed genes.</p> <p>Results</p> <p>In this study, we analysed differentially expressed genes after treatment of an ovarian carcinoma cell line with a cell cycle inhibitor. Treated versus control RNA was analysed for expression of 16425 genes represented on both platforms.</p> <p>We assessed reproducibility between replicates for each platform using CAT plots, and we found it high for both, with better scores for AFFX. We then applied integrative correlation analysis to assess reproducibility of gene expression patterns across studies, bypassing the need for normalizing expression measurements across platforms. We identified 930 genes as differentially expressed on AFFX and 908 on ABI, with ~80% common to both platforms. Despite the different absolute values, the range of intensities of the differentially expressed genes detected by each platform was similar. ABI showed a slightly higher dynamic range in FC values, which might be associated with its detection system. 62/66 genes identified as differentially expressed by Microarray were confirmed by RT-PCR.</p> <p>Conclusion</p> <p>In this study we present a cross-platform validation of two oligonucleotide-based technologies, AFFX and ABI. We found good reproducibility between replicates, and showed that both platforms can be used to select differentially expressed genes with substantial agreement. Pathway analysis of the affected functions identified themes well in agreement with those expected for a cell cycle inhibitor, suggesting that this procedure is appropriate to facilitate the identification of biologically relevant signatures associated with compound treatment. The high rate of confirmation found for both common and platform-specific genes suggests that the combination of platforms may overcome biases related to probe design and technical features, thereby accelerating the identification of trustworthy differentially expressed genes.</p

    The CUGBP2 Splicing Factor Regulates an Ensemble of Branchpoints from Perimeter Binding Sites with Implications for Autoregulation

    Get PDF
    Alternative pre-mRNA splicing adjusts the transcriptional output of the genome by generating related mRNAs from a single primary transcript, thereby expanding protein diversity. A fundamental unanswered question is how splicing factors achieve specificity in the selection of target substrates despite the recognition of information-poor sequence motifs. The CUGBP2 splicing regulator plays a key role in the brain region-specific silencing of the NI exon of the NMDA R1 receptor. However, the sequence motifs utilized by this factor for specific target exon selection and its role in splicing silencing are not understood. Here, we use chemical modification footprinting to map the contact sites of CUGBP2 to GU-rich motifs closely positioned at the boundaries of the branch sites of the NI exon, and we demonstrate a mechanistic role for this specific arrangement of motifs for the regulation of branchpoint formation. General support for a branch site-perimeter–binding model is indicated by the identification of a group of novel target exons with a similar configuration of motifs that are silenced by CUGBP2. These results reveal an autoregulatory role for CUGBP2 as indicated by its direct interaction with functionally significant RNA motifs surrounding the branch sites upstream of exon 6 of the CUGBP2 transcript itself. The perimeter-binding model explains how CUGBP2 can effectively embrace the branch site region to achieve the specificity needed for the selection of exon targets and the fine-tuning of alternative splicing patterns

    A High-Resolution View of Genome-Wide Pneumococcal Transformation

    Get PDF
    Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10−4 bp−1. This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci

    Informed Conditioning on Clinical Covariates Increases Power in Case-Control Association Studies

    Get PDF
    Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose power under case-control ascertainment and fail to capture available power increases under case-control-covariate ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2 diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for 115 of the 157 known associated variants investigated (P-value = 1×10−9). The improvement varied across diseases with a 16% median increase in χ2 test statistics and a commensurate increase in power. This suggests that applying our method to existing and future association studies of these diseases may identify novel disease loci
    corecore