19,614 research outputs found

    Shell-model study of the N=82 isotonic chain with a realistic effective hamiltonian

    Full text link
    We have performed shell-model calculations for the even- and odd-mass N=82 isotones, focusing attention on low-energy states. The single-particle energies and effective two-body interaction have been both determined within the framework of the time-dependent degenerate linked-diagram perturbation theory, starting from a low-momentum interaction derived from the CD-Bonn nucleon-nucleon potential. In this way, no phenomenological input enters our effective Hamiltonian, whose reliability is evidenced by the good agreement between theory and experiment.Comment: 7 pages, 11 figures, 3 tables, to be published in Physical Review

    Design of a digital controller for spinning flexible spacecraft

    Get PDF
    An approach to digital control system design is applied to the analysis and design of a practical onboard digital attitude control system for a class of spinning vehicles characterized by a rigid body and two connected flexible appendages. The approach used is to design a continuous-data control system that will provide a satisfactory system response. Then, using the digital redesign method, a digital controller with onboard digital computer is designed to provide a digital control system whose states are similar to those of the continuous system at sampling instants. The simplicity of application of this approach is indicated by example. The example, using spinning Skylab parameters, is used to substantiate the conclusions

    Three-body monopole corrections to the realistic interactions

    Get PDF
    It is shown that a very simple three-body monopole term can solve practically all the spectroscopic problems--in the pp, sdsd and pfpf shells--that were hitherto assumed to need drastic revisions of the realistic potentials.Comment: 4 pages, 5figure

    Low momentum nucleon-nucleon potential and shell model effective interactions

    Get PDF
    A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson exhange potentials by integrating out the model dependent high momentum modes of V_NN. The smooth and approximately unique V-low-k is used as input for shell model calculations instead of the usual Brueckner G matrix. Such an approach eliminates the nuclear mass dependence of the input interaction one finds in the G matrix approach, allowing the same input interaction to be used in different nuclear regions. Shell model calculations of 18O, 134Te and 135I using the same input V-low-k have been performed. For cut-off momentum Lambda in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure

    Study of the ground-state energy of 40Ca with the CD-Bonn nucleon-nucleon potential

    Full text link
    We have calculated the ground-state energy of the doubly-magic nucleus 40Ca within the framework of the Goldstone expansion using the CD-Bonn nucleon-nucleon potential. The short-range repulsion of this potential has been renormalized by integrating out its high-momentum components so as to derive a low-momentum potential V-low-k defined up to a cutoff momentum Lambda. A simple criterion has been employed to establish a connection between this cutoff momentum and the size of the two-nucleon model space in the harmonic oscillator basis. This model-space truncation approach provides a reliable way to renormalize the free nucleon-nucleon potential preserving its many-body physics. The role of the 3p-3h and 4p-4h excitations in the description of the ground state of 40Ca is discussed.Comment: 4 pages, 1 figure, 1 table, to be published in Physical Review

    Variational Principle for Mixed Classical-Quantum Systems

    Full text link
    An extended variational principle providing the equations of motion for a system consisting of interacting classical, quasiclassical and quantum components is presented, and applied to the model of bilinear coupling. The relevant dynamical variables are expressed in the form of a quantum state vector which includes the action of the classical subsystem in its phase factor. It is shown that the statistical ensemble of Brownian state vectors for a quantum particle in a classical thermal environment can be described by a density matrix evolving according to a nonlinear quantum Fokker-Planck equation. Exact solutions of this equation are obtained for a two-level system in the limit of high temperatures, considering both stationary and nonstationary initial states. A treatment of the common time shared by the quantum system and its classical environment, as a collective variable rather than as a parameter, is presented in the Appendix.Comment: 16 pages, LaTex; added Figure 2 and Figure

    Self-consistent approach for the quantum confined Stark effect in shallow quantum wells

    Full text link
    A computationally efficient, self-consistent complex scaling approach to calculating characteristics of excitons in an external electric field in quantum wells is introduced. The method allows one to extract the resonance position as well as the field-induced broadening for the exciton resonance. For the case of strong confinement the trial function is represented in factorized form. The corresponding coupled self-consistent equations, which include the effective complex potentials, are obtained. The method is applied to the shallow quantum well. It is shown that in this case the real part of the effective exciton potential is insensitive to changes of external electric field up to the ionization threshold, while the imaginary part has non-analytical field dependence and small for moderate electric fields. This allows one to express the exciton quasi-energy at some field through the renormalized expression for the zero-field bound state.Comment: 13 pages, RevTeX4, 6 figure
    • …
    corecore