41,196 research outputs found

    Pairing and realistic shell-model interactions

    Full text link
    This paper starts with a brief historical overview of pairing in nuclei, which fulfills the purpose of properly framing the main subject. This concerns the pairing properties of a realistic shell-model effective interaction which has proved very successful in describing nuclei around doubly magic 132Sn. We focus attention on the two nuclei 134Te and 134Sn with two valence protons and neutrons, respectively. Our study brings out the key role of one particle-one hole excitations in producing a significant difference between proton and neutron pairing in this region

    Remote monitoring of a thermal plume

    Get PDF
    A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys

    Universality proof and analysis of generalized nested Uhrig dynamical decoupling

    Get PDF
    Nested Uhrig dynamical decoupling (NUDD) is a highly efficient quantum error suppression scheme that builds on optimized single axis UDD sequences. We prove the universality of NUDD and analyze its suppression of different error types in the setting of generalized control pulses. We present an explicit lower bound for the decoupling order of each error type, which we relate to the sequence orders of the nested UDD layers. We find that the error suppression capabilities of NUDD are strongly dependent on the parities and relative magnitudes of all nested UDD sequence orders. This allows us to predict the optimal arrangement of sequence orders. We test and confirm our analysis using numerical simulations.Comment: 22 pages, 4 figure

    p-Shell Nuclei and Two-Frequency Shell Model with a Realistic Effective Interaction

    Full text link
    We have studied p-shell nuclei using a two-frequency shell-model approach with an effective interaction derived from the Bonn-A nucleon-nucleon potential by means of a G-matrix folded-diagram method. First, we briefly describe our derivation of the effective interaction in a model space composed of harmonic hoscillator wave functions with two different length parameters, b_in and b_out, for the core and the valence orbits, respectively. Then we present some selected results of our calculations. We show that a good agreement with experiment is obtained, which is definitely better than that provided by a standard one-frequency calculation. A comparison with results obtained from large-basis shell-model calculations is also made.Comment: 9 pages, 1 figure, talk presented at VIII Convegno di Fisica Nucleare Teorica, Cortona, 18-21 Ottobre 200

    Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    Get PDF
    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained
    corecore