94 research outputs found

    Cbfbeta reduces Cbfbeta-SMMHC-associated acute myeloid leukemia in mice

    Get PDF
    The gene encoding for core-binding factor beta (CBFbeta) is altered in acute myeloid leukemia samples with an inversion in chromosome 16, expressing the fusion protein CBFbeta-SMMHC. Previous studies have shown that this oncoprotein interferes with hematopoietic differentiation and proliferation and participates in leukemia development. In this study, we provide evidence that Cbfbeta modulates the oncogenic function of this fusion protein. We show that Cbfbeta plays an important role in proliferation of hematopoietic progenitors expressing Cbfbeta-SMMHC in vitro. In addition, Cbfbeta-SMMHC-mediated leukemia development is accelerated in the absence of Cbfbeta. These results indicate that the balance between Cbfbeta and Cbfbeta-SMMHC directly affects leukemia development, and suggest that CBF-specific therapeutic molecules should target CBFbeta-SMMHC function while maintaining CBFbeta activity

    Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11

    Get PDF
    Recurrent chromosomal rearrangements are associated with the development of acute myeloid leukemia (AML). The frequent inversion of chromosome 16 creates the CBFB-MYH11 fusion gene that encodes the fusion protein CBFbeta-SMMHC. This fusion protein inhibits the core-binding factor (CBF), resulting in a block of hematopoietic differentiation, and induces leukemia upon the acquisition of additional mutations. A recent genetic screen identified Plag1 and Plagl2 as CBF beta-SMMHC candidate cooperating proteins. In this study, we demonstrate that Plag1 and Plagl2 independently cooperate with CBF beta-SMMHC in vivo to efficiently trigger leukemia with short latency in the mouse. In addition, Plag1 and Plagl2 increased proliferation by inducing G1 to S transition that resulted in the expansion of hematopoietic progenitors and increased cell renewal in vitro. Finally, PLAG1 and PLAGL2 expression was increased in 20% of human AML samples. Interestingly, PLAGL2 was preferentially increased in samples with chromosome 16 inversion, suggesting that PLAG1 and PLAGL2 may also contribute to human AML. Overall, this study shows that Plag1 and Plagl2 are novel leukemia oncogenes that act by expanding hematopoietic progenitors expressing CbF beta-SMMHC

    HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation

    Get PDF
    SummaryAcute myeloid leukemia (AML) is driven and sustained by leukemia stem cells (LSCs) with unlimited self-renewal capacity and resistance to chemotherapy. Mutation in the TP53 tumor suppressor is relatively rare in de novo AML; however, p53 can be regulated through post-translational mechanisms. Here, we show that p53 activity is inhibited in inv(16)+ AML LSCs via interactions with the CBFβ-SMMHC (CM) fusion protein and histone deacetylase 8 (HDAC8). HDAC8 aberrantly deacetylates p53 and promotes LSC transformation and maintenance. HDAC8 deficiency or inhibition using HDAC8-selective inhibitors (HDAC8i) effectively restores p53 acetylation and activity. Importantly, HDAC8 inhibition induces apoptosis in inv(16)+ AML CD34+ cells, while sparing the normal hematopoietic stem cells. Furthermore, in vivo HDAC8i administration profoundly diminishes AML propagation and abrogates leukemia-initiating capacity of both murine and patient-derived LSCs. This study elucidates an HDAC8-mediated p53-inactivating mechanism promoting LSC activity and highlights HDAC8 inhibition as a promising approach to selectively target inv(16)+ LSCs

    SIRT1 Activation by a c-MYC Oncogenic Network Promotes the Maintenance and Drug Resistance of Human FLT3-ITD Acute Myeloid Leukemia Stem Cells

    Get PDF
    SummaryThe FLT3-ITD mutation is frequently observed in acute myeloid leukemia (AML) and is associated with poor prognosis. In such patients, FLT3 tyrosine kinase inhibitors (TKIs) are only partially effective and do not eliminate the leukemia stem cells (LSCs) that are assumed to be the source of treatment failure. Here, we show that the NAD-dependent SIRT1 deacetylase is selectively overexpressed in primary human FLT3-ITD AML LSCs. This SIRT1 overexpression is related to enhanced expression of the USP22 deubiquitinase induced by c-MYC, leading to reduced SIRT1 ubiquitination and enhanced stability. Inhibition of SIRT1 expression or activity reduced the growth of FLT3-ITD AML LSCs and significantly enhanced TKI-mediated killing of the cells. Therefore, these results identify a c-MYC-related network that enhances SIRT1 protein expression in human FLT3-ITD AML LSCs and contributes to their maintenance. Inhibition of this oncogenic network could be an attractive approach for targeting FLT3-ITD AML LSCs to improve treatment outcomes

    Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neocallimastix patriciarum</it> is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (<it>GHs</it>) produced by this anaerobic fungus.</p> <p>Results</p> <p>We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to <it>N. patriciarum </it>to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative <it>GH </it>contigs and classified them into 25 <it>GH</it> families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the <it>GH1</it>, <it>GH3</it>, <it>GH5</it>, <it>GH6</it>, <it>GH9</it>, <it>GH18</it>, <it>GH43 </it>and <it>GH48 </it>gene families, which were highly expressed in <it>N. patriciarum </it>cultures grown on different feedstocks.</p> <p>Conclusions</p> <p>These <it>GH </it>genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.</p

    Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia

    Get PDF
    Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR–ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR–ABL, which led to inhibition of the RAN–exportin-5–RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR–ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML

    A study on novel biological activities of pro-IGF-I E-peptides in human neuroblastoma cells

    No full text
    Insulin-like growth factors (IGFs) are mitogenic peptides that play important roles in development, growth and differentiation in vertebrates. Insulin-like growth factors (IGFs) are initially translated as pre-pro-peptides that require further processing, removing the signal peptide and the E-domain peptide, to result in the mature peptide hormones. Multiple forms of pro-IGF-I, displaying developmental regulation and tissue specificity, have been identified in various species from fish to mammals with differences only in the carboxyl-terminal E-domains. However, the biological significance of the diversity of E-domain and its differential expression has been unclear. ^ The primary goal of this thesis is to characterize the biological activities of pro IGF-I E-peptides using a human neuroblastom(SK-N-F1)a cell line (SK-N-F1) as a model system. In this study, we demonstrate that Ea-4-peptide of rainbow trout (rtEa-4) and hEb-peptide of human pro-IGF-I hEb-elicits unique biological activities in inducing morphological differentiation and inhibiting anchorage-independent growth in human neuroblastoma cells. Identical nature and range of biological activities displayed by E-peptides of rainbow trout and humans suggest existence of functional conservation of these E-peptides over a wide evolutionary scale. Not only have we demonstrated that E-peptides of pro-IGF-I are biologically active, but these peptides also exhibit distinct or contrast activities from those of the mature IGF-I. Thus, the notion that E-peptides, as part of pro-IGF peptides, are only involved in the biosynthesis of the mature IGFs and otherwise biologically inert has been seriously challenged. Furthermore, our binding studies demonstrated that hEb-peptide and rtEa-4-peptide bind to two distinct binding sites or two affinity states on SK-N-F1 cells. The second binding site (IC50 of 4.8 ± 2.6 × 10−6 M for hEb-peptide and 2.1 ± 0.6 × 10−6 M for rtEa-4-peptide, respectively) is in good agreement with the in vitro effective concentration of E-peptides. In addition, we demonstrated that hEb-peptide and rtEa-4-peptide share common binding sites, distinct from those of mature IGF-I and insulin. These results support the hypothesis that pro-IGF-I E-peptides interact with specific cell surface receptors that are conserved from fish to humans. This work sets a foundation for further elucidation of the molecular mechanism of E-peptide actions.

    Comparison of cell state models derived from single-cell RNA sequencing data: graph versus multi-dimensional space.

    No full text
    Single-cell sequencing technologies have revolutionized molecular and cellular biology and stimulated the development of computational tools to analyze the data generated from these technology platforms. However, despite the recent explosion of computational analysis tools, relatively few mathematical models have been developed to utilize these data. Here we compare and contrast two cell state geometries for building mathematical models of cell state-transitions with single-cell RNA-sequencing data with hematopoeisis as a model system; (i) by using partial differential equations on a graph representing intermediate cell states between known cell types, and (ii) by using the equations on a multi-dimensional continuous cell state-space. As an application of our approach, we demonstrate how the calibrated models may be used to mathematically perturb normal hematopoeisis to simulate, predict, and study the emergence of novel cell states during the pathogenesis of acute myeloid leukemia. We particularly focus on comparing the strength and weakness of the graph model and multi-dimensional model

    Aging in a Relativistic Biological Space-Time

    No full text
    Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of “biological space-time” in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging
    • …
    corecore