2,414 research outputs found

    Low Polarization Voltage and High Sensitivity CMOS Condenser Microphone Using Stress Relaxation Design

    Get PDF
    AbstractIn this paper, a CMOS condenser microphone with high sensitivity and low polarization voltage was designed, simulated and fabricated. Due to CMOS process temperature variant and lattice defects, the poly-membrane would be invoked normal stress and gradient stress. These two residual stresses would deform the membrane and increase the membrane's rigidity. For these concerns, an interlace slots design is utilized to reduce the normal stress up to 90%, and the annealing process is applied to decrease the gradient stress. The acoustical sensitivity was increased considerably to -45dBV at 2.7V bias voltage, and, the noise level is -85dBV at 1KHz

    High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator

    Get PDF
    Abstract—Pentacene-based organic thin-film transistors (OTFTs) with solution-processed barium titanate (Ba1.2Ti0.8O3) as a gate insulator are demonstrated. The electrical properties of pentacene-based TFTs show a high field-effect mobility of 8.85 cm2 · V−1 · s−1, a low threshold voltage of −1.89 V, and a low subthreshold slope swing of 310 mV/decade. The chemical composition and binding energy of solution-processed barium titanate thin films are analyzed through X-ray photoelectron spectroscopy. The matching surface energy on the surface of the barium titanate thin film is 43.12 mJ · m−2, which leads to Stranski–Krastanov mode growth, and thus, high mobility is exhibited in pentacene-based TFTs. Index Terms—Barium titanate, high field-effect mobility, high permittivity, organic thin-filmtransistor (OTFT), solution process
    corecore