10 research outputs found

    Detection of neural connections with ex vivo MRI using a ferritin-encoding trans-synaptic virus

    Get PDF
    The elucidation of neural networks is essential to understanding the mechanisms of brain functions and brain disorders. Neurotropic virus-based trans-synaptic tracing tools have become an effective method for dissecting the structure and analyzing the function of neural-circuitry. However, these tracing systems rely on fluorescent signals, making it hard to visualize the panorama of the labeled networks in mammalian brain in vivo. One MRI method, Diffusion Tensor Imaging (DTI), is capable of imaging the networks of the whole brain in live animals but without information of anatomical connections through synapses. In this report, a chimeric gene coding for ferritin and enhanced green fluorescent protein (EGFP) was integrated into Vesicular stomatitis virus (VSV), a neurotropic virus that is able to spread anterogradely in synaptically connected networks. After the animal was injected with the recombinant VSV (rVSV), rVSV-Ferritin-EGFP, into the somatosensory cortex (SC) for four days, the labeled neural-network was visualized in the postmortem whole brain with a T2-weighted MRI sequence. The modified virus transmitted from SC to synaptically connected downstream regions. The results demonstrate that rVSV-Ferritin-EGFP could be used as a bimodal imaging vector for detecting synaptically connected neural-network with both ex vivo MRI and fluorescent imaging. The strategy in the current study has the potential to longitudinally monitor the global structure of a given neural-network in living animals

    Rabies virus pseudotyped with CVS-N2C glycoprotein as a powerful tool for retrograde neuronal network tracing

    Get PDF
    Abstract Background: Efficient viral vectors for mapping and manipulating long projection neuronal circuits are crucial in brain structural and functional studies. The glycoprotein gene-deleted SAD strain rabies virus pseudotyped with the N2C glycoprotein (SAD-RV(ΔG)-N2C(G)) shows high neuro-tropism in cell culture, but its in vivo retrograde infection efficiency and neuro-tropism have not been systematically characterized. Methods: SAD-RV(ΔG)-N2C(G) and two other broadly used retrograde tracers, SAD-RV(ΔG)-B19(G) and rAAV2-retro were respectively injected into the VTA or DG in C57BL/6 mice. The neuron numbers labeled across the whole brain regions were counted and analyzed by measuring the retrograde infection efficiencies and tropisms of these viral tools. The labeled neural types were analyzed using fluorescence immunohistochemistry or GAD67-GFP mice. Result: We found that SAD-RV (ΔG)-N2C (G) enhanced the infection efficiency of long-projecting neurons by ~ 10 times but with very similar neuro-tropism, compared with SAD-RV (ΔG)-B19(G). On the other hand, SAD-RV(ΔG)-N2C(G) showed comparable infection efficiency with rAAV2-retro, but had a more restricted diffusion range, and broader tropism to different types and regions of long-projecting neuronal populations. Conclusions: These results demonstrate that SAD-RV(ΔG)-N2C(G) can serve as an effective retrograde vector for studying neuronal circuits. Key words:Viral vector, N2C Glycoprotein, Neuronal circuits, Retrograde tracin

    Brain-wide N2cG compensation permits glycoprotein-deleted rabies virus to trace neural circuits across multiple synapses

    No full text
    Rabies-viruses-based retrograde tracers can spread across multiple synapses in a retrograde direction in the nervous system of rodents and primates, making them powerful tools for determining the structure and function of the complicated neural circuits of the brain. However, they have some limitations, such as posing high risks to human health and the inability to retrograde trans-synaptic label inputs from genetically-defined starter neurons. Here, we established a new retrograde trans-multi-synaptic tracing method through brain-wide rabies virus glycoprotein (RVG) compensation, followed by glycoprotein-deleted rabies virus (RV-[Formula: see text]G) infection in specific brain regions. Furthermore, in combination with the avian tumor virus receptor A (TVA) controlled by a cell-type-specific promoter, we found that EnvA-pseudotyped RV-[Formula: see text]G can mediate efficient retrograde trans-multi-synaptic transduction from cell-type-specific starter neurons. This study provides new alternative methods for neuroscience researchers to analyze the input neural networks of rodents and nonhuman primates

    fMRI, LFP, and anatomical evidence for hierarchical nociceptive routing pathway between somatosensory and insular cortices

    No full text
    The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies

    CLEAR Strategy Inhibited HSV Proliferation Using Viral Vectors Delivered CRISPR-Cas9

    No full text
    Herpes simplex virus type 1 (HSV-1) is a leading cause of encephalitis and infectious blindness. The commonly used clinical therapeutic drugs are nucleoside analogues such as acyclovir. However, current drugs for HSV cannot eliminate the latent virus or viral reactivation. Therefore, the development of new treatment strategies against latent HSV has become an urgent need. To comprehensively suppress the proliferation of HSV, we designed the CLEAR strategy (coordinated lifecycle elimination against viral replication). VP16, ICP27, ICP4, and gD—which are crucial genes that perform significant functions in different stages of the HSV infection lifecycle—were selected as targeting sites based on CRISPR-Cas9 editing system. In vitro and in vivo investigations revealed that genome editing by VP16, ICP27, ICP4 or gD single gene targeting could effectively inhibit HSV replication. Moreover, the combined administration method (termed “Cocktail”) showed superior effects compared to single gene editing, which resulted in the greatest decrease in viral proliferation. Lentivirus-delivered CRISPR-Cas9/gRNA editing could effectively block HSV replication. The CLEAR strategy may provide new insights into the potential treatment of refractory HSV-1-associated diseases, particularly when conventional approaches have encountered resistance

    AAV13 Enables Precise Targeting of Local Neural Populations

    No full text
    As powerful tools for local gene delivery, adeno-associated viruses (AAVs) are widely used for neural circuit studies and therapeutical purposes. However, most of them have the characteristics of large diffusion range and retrograde labeling, which may result in off-target transduction during in vivo application. Here, in order to achieve precise gene delivery, we screened AAV serotypes that have not been commonly used as gene vectors and found that AAV13 can precisely transduce local neurons in the brain, with a smaller diffusion range than AAV2 and rigorous anterograde labeling. Then, AAV13-based single-viral and dual-viral strategies for sparse labeling of local neurons in the brains of C57BL/6 or Cre transgenic mice were developed. Additionally, through the neurobehavioral test in the ventral tegmental area, we demonstrated that AAV13 was validated for functional monitoring by means of carrying Cre recombinase to drive the expression of Cre-dependent calcium-sensitive indicator. In summary, our study provides AAV13-based toolkits for precise local gene delivery, which can be used for in situ small nuclei targeting, sparse labeling and functional monitoring

    AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction

    No full text
    Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer’s disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders
    corecore