233 research outputs found

    Adult urinary bladder tumors with rabdomyosarcomatous differentiation: Clinical, pathological and immunohistochemical studies

    Get PDF
    Adult rhabdomyosarcoma (RMS) in the urinary bladder is rare, and is the subject of case reports and small series. It consists of sheets of small round blue cells with high nuclear cytoplasmic ratio, brisk mitosis and apoptosis. In this study, we reported one case of pure rhabdomyosarcoma and two cases of urothelial carcinomas with extensive rhabdomyosarcomatous differentiation. In addition, their immunohistochemical profile was compared to that of small cell carcinoma of the bladder. Our study showed that sufficient sampling was critical for the diagnosis of urothelial carcinoma with extensive rhabdomyosarcomatous differentiation. As adult RMS in the bladder and urothelial carcinoma with rhabdomyosarcomatous differentiation shared morphological features with small cell carcinoma of the bladder, appropriate immunohistochemical stains were necessary in the differential diagnosis. We showed both rhabdomyosarcoma and rhabdomyosarcomatous areas of the urothelial carcinoma were positive for myogenin, negative for cytokeratin and chromogranin stains. In contrast, small cell carcinoma was positive for cytokeratin, and 7 out of 9 cases were also positive for chromogranin. Both rhabdomyosarcoma and small cell carcinoma could be positive for synaptophysin, a potential pitfall to avoid. In addition, all of the tumors with rhabdomyosarcomatous differentiation were negative for FKHR rearrangement

    Breakup Temperature of Target Spectators in Au + Au Collisions at E/A = 1000 MeV

    Get PDF
    Breakup temperatures were deduced from double ratios of isotope yields for target spectators produced in the reaction Au + Au at 1000 MeV per nucleon. Pairs of 3,4^{3,4}He and 6,7^{6,7}Li isotopes and pairs of 3,4^{3,4}He and H isotopes (p, d and d, t) yield consistent temperatures after feeding corrections, based on the quantum statistical model, are applied. The temperatures rise with decreasing impact parameter from 4 MeV for peripheral to about 10 MeV for the most central collisions. The good agreement with the breakup temperatures measured previously for projectile spectators at an incident energy of 600 MeV per nucleon confirms the observed universality of the spectator decay at relativistic bombarding energies. The measured temperatures also agree with the breakup temperatures predicted by the statistical multifragmentation model. For these calculations a relation between the initial excitation energy and mass was derived which gives good simultaneous agreement for the fragment charge correlations. The energy spectra of light charged particles, measured at θlab\theta_{lab} = 150^{\circ}, exhibit Maxwellian shapes with inverse slope parameters much higher than the breakup temperatures. The statistical multifragmentation model, because Coulomb repulsion and sequential decay processes are included, yields light-particle spectra with inverse slope parameters higher than the breakup temperatures but considerably below the measured values. The systematic behavior of the differences suggests that they are caused by light-charged-particle emission prior to the final breakup stage. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 29 pages, TeX with 11 included figures; Revised version accepted for publication in Z. Phys. A Two additional figure

    Mechanosensitive Enteric Neurons in the Myenteric Plexus of the Mouse Intestine

    Get PDF
    BACKGROUND: Within the gut the autonomous enteric nervous system (ENS) is able to sense mechanical stimuli and to trigger gut reflex behaviour. We previously proposed a novel sensory circuit in the ENS which consists of multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the guinea pig. The aim of this study was to validate this concept by studying its applicability to other species or gut regions. METHODOLOGY/PRINCIPAL FINDINGS: We deformed myenteric ganglia in the mouse small and large intestine and recorded spike discharge using voltage sensitive dye imaging. We also analysed expression of markers hitherto proposed to label mouse sensory myenteric neurons in the ileum (NF145kD) or colon (calretinin). RAMEN constituted 22% and 15% of myenteric neurons per ganglion in the ileum and colon, respectively. They encoded dynamic rather than sustained deformation. In the colon, 7% of mechanosensitive neurons fired throughout the sustained deformation, a behaviour typical for slowly adapting echanosensitive neurons (SAMEN). RAMEN and SAMEN responded directly to mechanical deformation as their response remained unchanged after synaptic blockade in low Ca(++)/high Mg(++). Activity levels of RAMEN increased with the degree of ganglion deformation. Recruitment of more RAMEN with stronger stimuli may suggest low and high threshold RAMEN. The majority of RAMEN were cholinergic but most lacked expression of NF145kD or calretinin. CONCLUSIONS/SIGNIFICANCE: We showed for the first time that fundamental properties of mechanosensitive enteric neurons, such as firing pattern, encoding of dynamic deformation, cholinergic phenotype and their proportion, are conserved across species and regions. We conclude that RAMEN are important for mechanotransduction in the ENS. They directly encode dynamic changes in force as their firing frequency is proportional to the degree of deformation of the ganglion they reside in. The additional existence of SAMEN in the colon is likely an adaptation to colonic motor patterns which consist of phasic and tonic contractions

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Identification of a Novel Response Regulator, Crr1, That Is Required for Hydrogen Peroxide Resistance in Candida albicans

    Get PDF
    Candida albicans colonises numerous niches within humans and thus its success as a pathogen is dependent on its ability to adapt to diverse growth environments within the host. Two component signal transduction is a common mechanism by which bacteria respond to environmental stimuli and, although less common, two component-related pathways have also been characterised in fungi. Here we report the identification and characterisation of a novel two component response regulator protein in C. albicans which we have named CRR1 (Candida Response Regulator 1). Crr1 contains a receiver domain characteristic of response regulator proteins, including the conserved aspartate that receives phosphate from an upstream histidine kinase. Significantly, orthologues of CRR1 are present only in fungi belonging to the Candida CTG clade. Deletion of the C. albicans CRR1 gene, or mutation of the predicted phospho-aspartate, causes increased sensitivity of cells to the oxidising agent hydrogen peroxide. Crr1 is present in both the cytoplasm and nucleus, and this localisation is unaffected by oxidative stress or mutation of the predicted phospho-aspartate. Furthermore, unlike the Ssk1 response regulator, Crr1 is not required for the hydrogen peroxide-induced activation of the Hog1 stress-activated protein kinase pathway, or for the virulence of C. albicans in a mouse model of systemic disease. Taken together, our data suggest that Crr1, a novel response regulator restricted to the Candida CTG clade, regulates the response of C. albicans cells to hydrogen peroxide in a Hog1-independent manner that requires the function of the conserved phospho-aspartate

    Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program

    Get PDF
    After a meal, the gastrointestinal tract exhibits a set of behaviours known as the fed state. A major feature of the fed state is a little understood motor pattern known as segmentation, which is essential for digestion and nutrient absorption. Segmentation manifests as rhythmic local constrictions that do not propagate along the intestine. In guinea-pig jejunum in vitro segmentation constrictions occur in short bursts together with other motor patterns in episodes of activity lasting 40–60 s and separated by quiescent episodes lasting 40–200 s. This activity is induced by luminal nutrients and abolished by blocking activity in the enteric nervous system (ENS). We investigated the enteric circuits that regulate segmentation focusing on a central feature of the ENS: a recurrent excitatory network of intrinsic sensory neurons (ISNs) which are characterized by prolonged after-hyperpolarizing potentials (AHPs) following their action potentials. We first examined the effects of depressing AHPs with blockers of the underlying channels (TRAM-34 and clotrimazole) on motor patterns induced in guinea-pig jejunum, in vitro, by luminal decanoic acid. Contractile episode durations increased markedly, but the frequency and number of constrictions within segmenting bursts and quiescent period durations were unaffected. We used these observations to develop a computational model of activity in ISNs, excitatory and inhibitory motor neurons and the muscle. The model predicted that: i) feedback to ISNs from contractions in the circular muscle is required to produce alternating activity and quiescence with the right durations; ii) transmission from ISNs to excitatory motor neurons is via fast excitatory synaptic potentials (EPSPs) and to inhibitory motor neurons via slow EPSPs. We conclude that two rhythm generators regulate segmentation: one drives contractions within segmentation bursts, the other the occurrence of bursts. The latter depends on AHPs in ISNs and feedback to these neurons from contraction of the circular muscle

    The Cognitive Ecology of the Internet

    Get PDF
    In this chapter, we analyze the relationships between the Internet and its users in terms of situated cognition theory. We first argue that the Internet is a new kind of cognitive ecology, providing almost constant access to a vast amount of digital information that is increasingly more integrated into our cognitive routines. We then briefly introduce situated cognition theory and its species of embedded, embodied, extended, distributed and collective cognition. Having thus set the stage, we begin by taking an embedded cognition view and analyze how the Internet aids certain cognitive tasks. After that, we conceptualize how the Internet enables new kinds of embodied interaction, extends certain aspects of our embodiment, and examine how wearable technologies that monitor physiological, behavioral and contextual states transform the embodied self. On the basis of the degree of cognitive integration between a user and Internet resource, we then look at how and when the Internet extends our cognitive processes. We end this chapter with a discussion of distributed and collective cognition as facilitated by the Internet

    Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Get PDF
    Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered

    The peroxisome: still a mysterious organelle

    Get PDF
    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed
    corecore