2,852 research outputs found

    Generalized CMB initial conditions with pre-equality magnetic fields

    Get PDF
    The most general initial conditions of CMB anisotropies, compatible with the presence of pre-equality magnetic fields, are derived. When the plasma is composed by photons, baryons, electrons, CDM particles and neutrinos, the initial data of the truncated Einstein-Boltzmann hierarchy contemplate one magnetized adiabatic mode and four (magnetized) non-adiabatic modes. After obtaining the analytical form of the various solutions, the Einstein-Boltzmann hierarchy is numerically integrated for the corresponding sets of initial data. The TT, TE and EE angular power spectra are illustrated and discussed for the magnetized generalization of the CDM-radiation mode, of the baryon-radiation mode and of the non-adiabatic mode of the neutrino sector. Mixtures of initial conditions are examined by requiring that the magnetized adiabatic mode dominates over the remaining non-adiabatic contributions. In the latter case, possible degeneracies between complementary sets of initial data might be avoided through the combined analysis of the TT, TE and EE angular power spectra at high multipoles (i.e. ℓ>1000\ell >1000).Comment: 28 pages, 24 included figures in eps styl

    Curved dilatonic brane worlds

    Get PDF
    We construct a broad family of exact solutions to the five-dimensional Einstein equations coupled to a scalar field with an exponential potential. Embedding a three-brane in these bulk space-times in a particular way we obtain a class of self-tuned curved brane worlds in which the vacuum energy on the brane is gravitationally idle, the four-dimensional geometry being insensitive to the value of the brane tension. This self-tuning arises from cancellations, enforced by the junction conditions, between the scalar field potential, the brane vacuum energy and the matter on the brane. Finally, we study some physically relevant examples and their dynamics.Comment: v2: 10 pages, RevTeX4. Minor changes. Typos corrected and references added. New paragraph included in the conclusions discussing the role of the singularities in the self-tuning mechanism. Final version to appear in Physical Review

    Primordial magnetic fields and nonlinear electrodynamics

    Full text link
    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by lagrangians having a power law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.Comment: 21 pages, 3 figure

    Local temperature for dynamical black holes

    Full text link
    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.Comment: 7 pages, contribution to Proceedings of ERE200

    The impact of draping effects on the stiffness and failure behavior of unidirectional non-crimp fabric fiber reinforced composites

    Get PDF
    Unidirectional non-crimp fabrics (UD-NCF) are often used to exploit the lightweight potential of continuous fiber reinforced plastics (CoFRP). During the draping process, the UD-NCF fabric can undergo large deformations that alter the local fiber orientation, the local fiber volume content (FVC) and create local fiber waviness. Especially the FVC is affected and has a large impact on the mechanical properties. This impact, resulting from different deformation modes during draping, is in general not considered in composite design processes. To analyze the impact of different draping effects on the mechanical properties and the failure behavior of UD-NCF composites, experimental results of reference laminates are compared to the results of laminates with specifically induced draping effects, such as non-constant FVC and fiber waviness. Furthermore, an analytical model to predict the failure strengths of UD laminates with in-plane waviness is introduced. The resulting stiffness and strength values for different FVC or amplitude to wavelength configurations are presented and discussed. In addition, failure envelopes based on the PUCK failure criterion for each draping effect are derived, which show a clear specific impact on the mechanical properties. The findings suggest that each draping effect leads to a “new fabric” type. Additionally, analytical models are introduced and the experimental results are compared to the predictions. Results indicate that the models provide reliable predictions for each draping effect. Recommendations regarding necessary tests to consider each draping effect are presented. As a further prospect the resulting stiffness and strength values for each draping effect can be used for a more accurate prediction of the structural performance of CoFRP parts

    Initial Conditions and the Structure of the Singularity in Pre-Big-Bang Cosmology

    Get PDF
    We propose a picture, within the pre-big-bang approach, in which the universe emerges from a bath of plane gravitational and dilatonic waves. The waves interact gravitationally breaking the exact plane symmetry and lead generically to gravitational collapse resulting in a singularity with the Kasner-like structure. The analytic relations between the Kasner exponents and the initial data are explicitly evaluated and it is shown that pre-big-bang inflation may occur within a dense set of initial data. Finally, we argue that plane waves carry zero gravitational entropy and thus are, from a thermodynamical point of view, good candidates for the universe to emerge from.Comment: 18 pages, LaTeX, epsfig. 3 figures included. Minor changes; paragraph added in the introduction, references added and typos corrected. Final version published in Classical and Quantum Gravit

    Exponential splitting of bound states in a waveguide with a pair of distant windows

    Full text link
    We consider Laplacian in a straight planar strip with Dirichlet boundary which has two Neumann ``windows'' of the same length the centers of which are 2l2l apart, and study the asymptotic behaviour of the discrete spectrum as l→∞l\to\infty. It is shown that there are pairs of eigenvalues around each isolated eigenvalue of a single-window strip and their distances vanish exponentially in the limit l→∞l\to\infty. We derive an asymptotic expansion also in the case where a single window gives rise to a threshold resonance which the presence of the other window turns into a single isolated eigenvalue

    Infrared Spectroscopy of a Massive Obscured Star Cluster in the Antennae Galaxies (NGC 4038/4039) with NIRSPEC

    Full text link
    We present infrared spectroscopy of the Antennae Galaxies (NGC 4038/4039) with NIRSPEC at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) in 0.39" seeing in K-band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR (M_K(0) = -17.9) is insignificant optically, but coincident with the highest surface brightness peak in the mid-IR (12-18 micron) ISO image presented by Mirabel et al. (1998). We obtained high signal-to-noise 2.03 - 2.45 micron spectra of the nucleus and the obscured star cluster at R ~ 1900. The cluster is very young (4 Myr old), massive (16e6 M_sun), and compact (density ~ 115 M_sun pc^(-3) within a 32 pc half-light radius), assuming a Salpeter IMF (0.1 - 100 M_sun). Its hot stars have a radiation field characterized by T_eff ~ 39,000 K, and they ionize a compact H II region with n_e ~ 1e4 cm^(-3). The stars are deeply embedded in gas and dust (A_V ~ 9-10 mag), and their strong FUV field powers a clumpy photodissociation region with densities n_H >= 1e5 cm^(-3) on scales of up to 200 pc, radiating L[H_2 1-0 S(1)] = 9600 L_sun.Comment: 4 pages, 5 embedded figures. To appear in proceedings of 33d ESLAB Symposium: Star Formation from the Small to the Large Scale, held in Noordwijk, The Netherlands, Nov. 1999. Also available at http://astro.berkeley.edu/~agilber
    • 

    corecore