We propose a picture, within the pre-big-bang approach, in which the universe
emerges from a bath of plane gravitational and dilatonic waves. The waves
interact gravitationally breaking the exact plane symmetry and lead generically
to gravitational collapse resulting in a singularity with the Kasner-like
structure. The analytic relations between the Kasner exponents and the initial
data are explicitly evaluated and it is shown that pre-big-bang inflation may
occur within a dense set of initial data. Finally, we argue that plane waves
carry zero gravitational entropy and thus are, from a thermodynamical point of
view, good candidates for the universe to emerge from.Comment: 18 pages, LaTeX, epsfig. 3 figures included. Minor changes; paragraph
added in the introduction, references added and typos corrected. Final
version published in Classical and Quantum Gravit