3,631 research outputs found

    The Vlasov-Poisson system with radiation damping

    Full text link
    We set up and analyze a model of radiation damping within the framework of continuum mechanics, inspired by a model of post-Newtonian hydrodynamics due to Blanchet, Damour and Schaefer. In order to simplify the problem as much as possible we replace the gravitational field by the electromagnetic field and the fluid by kinetic theory. We prove that the resulting system has a well-posed Cauchy problem globally in time for general initial data and in all solutions the fields decay to zero at late times. In particular, this means that the model is free from the runaway solutions which frequently occur in descriptions of radiation reaction

    Cavity reactor critical experiment, volume 3

    Get PDF
    Cavity reactor critical experiment - volume

    Simplified models of electromagnetic and gravitational radiation damping

    Get PDF
    In previous work the authors analysed the global properties of an approximate model of radiation damping for charged particles. This work is put into context and related to the original motivation of understanding approximations used in the study of gravitational radiation damping. It is examined to what extent the results obtained previously depend on the particular model chosen. Comparisons are made with other models for gravitational and electromagnetic fields. The relation of the kinetic model for which theorems were proved to certain many-particle models with radiation damping is exhibited

    Gas cavity reactor simulation experiment final report

    Get PDF
    Gaseous cavitation reactor simulation experiment using uranium fluoride fue

    Cavity reactor critical experiment, volume 4 (waves and control methods)

    Get PDF
    Fuel wave formation and control in coaxial flowing gas cavity reactor for space nuclear propulsio

    Experimental rate coefficients for collisional excitation of lithium-like ions

    Get PDF
    Collisional excitation rates for lithium-like ions derived from diagnosed plasma produced in theta pinch device and line intensities emitted by these ion

    Flowing gas, non-nuclear experiments on the gas core reactor

    Get PDF
    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes

    Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on Banach spaces

    Full text link
    We prove a Miyadera-Voigt type perturbation theorem for strong Feller semigroups. Using this result, we prove well-posedness of the semilinear stochastic equation dX(t) = [AX(t) + F(X(t))]dt + GdW_H(t) on a separable Banach space E, assuming that F is bounded and measurable and that the associated linear equation, i.e. the equation with F = 0, is well-posed and its transition semigroup is strongly Feller and satisfies an appropriate gradient estimate. We also study existence and uniqueness of invariant measures for the associated transition semigroup.Comment: Revision based on the referee's comment
    corecore