26 research outputs found

    LDV measurement and Navier-Stokes computation of parallel jet mixing in a rectangular confinement

    Full text link
    Laser Doppler Velocimetry (LDV) measurements were taken in a rectangular confinement into which issues a row of parallel jets. Two-component measurements were taken with two optics orientations yielding three mean velocity components and four Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicates that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects. Navier-Stokes analyses of this configuration underpredict the rate of transverse jet diffusion. Detailed numerical accuracy studies show that this is attributed to shortcomings in low-Reynolds number two-equation turbulence modelling. A low-Reynolds number full-Reynolds stress model is shown to provide improvement

    Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models

    Get PDF
    We investigate the global texture model of structure formation in cosmogonies with non-zero cosmological constant for different values of the Hubble parameter. We find that the absence of significant acoustic peaks and little power on large scales are robust predictions of these models. However, from a careful comparison with data we conclude that at present we cannot safely reject the model on the grounds of present CMB data. Exclusion by means of galaxy correlation data requires assumptions on biasing and statistics. New, very stringent constraints come from peculiar velocities. Investigating the large-N limit, we argue that our main conclusions apply to all global O(N) models of structure formation.Comment: LaTeX file with RevTex, 27 pages, 23 eps figs., submitted to Phys. Rev. D. A version with higher quality images can be found at http://mykonos.unige.ch/~kunz/download/lam.tar.gz for the LaTeX archive and at http://mykonos.unige.ch/~kunz/download/lam.ps.gz for the compiled PostScript fil

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    An exploratory study investigating the metabolic activity and local cytokine profile in patients with melanoma treated with pazopanib and paclitaxel.

    No full text
    There is a medical need for new drugs in patients with BRAF wild-type metastatic melanoma. Pazopanib is a multitarget tyrosine kinase inhibitor with antitumour and antiangiogenic activity. The primary aim was to investigate the metabolic response to pazopanib monotherapy and pazopanib plus paclitaxel in patients with BRAF wild-type melanoma. Secondary end points were the early cytokine and chemokine profiles and histological findings. Pazopanib (400 mg twice daily) was administered orally from days 1 to 10 and from days 14 to 70. An intravenous infusion with paclitaxel (150 mg m <sup>-2</sup> body surface) was administered on days 14, 35 and 56. Metabolic response evaluation was performed before treatment, after treatment with pazopanib (day 10) and after treatment with pazopanib and paclitaxel (day 70). Skin biopsy of metastatic tissue for chemokine and cytokine expression analysis and histology and immunohistochemistry (CD68, CD163) evaluation, and blood samples were taken at the same time points. Two patients failed screening and 17 were dosed. Of 67 adverse events, nine (13%) were grade 3 or 4. Five of 14 evaluable patients had a partial metabolic response at day 10 under pazopanib monotherapy. The response rate at day 70 under combined pazopanib-paclitaxel treatment was 0%. Immunohistochemistry revealed an increase of M2-like macrophages in nonresponders compared with responders. We observed a significant upregulation of five cytokines (CXCL1, CXCL2, CXCL13, CCL22 and SPP1) in responding vs. nonresponding lesions. Overall, the median progression-free survival was 70 days (range 5-331), which did not differ significantly between responders (148 days) and nonresponders (70 days, P = 0·17). In this patient population pazopanib efficacy was limited. Response is associated with low M2-like macrophage density and increased expression of several chemokines

    Schistosoma mansoni

    No full text
    corecore